mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 04:44:30 +08:00
Add LoadAndResizeImage
This commit is contained in:
parent
f741ef0252
commit
7e6bd8d14a
@ -61,6 +61,7 @@ NODE_CONFIG = {
|
||||
"ImageResizeKJ": {"class": ImageResizeKJ, "name": "Resize Image"},
|
||||
"ImageUpscaleWithModelBatched": {"class": ImageUpscaleWithModelBatched, "name": "Image Upscale With Model Batched"},
|
||||
"InsertImagesToBatchIndexed": {"class": InsertImagesToBatchIndexed, "name": "Insert Images To Batch Indexed"},
|
||||
"LoadAndResizeImage": {"class": LoadAndResizeImage, "name": "Load & Resize Image"},
|
||||
"MergeImageChannels": {"class": MergeImageChannels, "name": "Merge Image Channels"},
|
||||
"PreviewAnimation": {"class": PreviewAnimation, "name": "Preview Animation"},
|
||||
"RemapImageRange": {"class": RemapImageRange, "name": "Remap Image Range"},
|
||||
|
||||
@ -7,7 +7,8 @@ import math
|
||||
import os
|
||||
import re
|
||||
import json
|
||||
from PIL import ImageGrab, ImageDraw, ImageFont, Image
|
||||
import hashlib
|
||||
from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageSequence, ImageOps
|
||||
|
||||
from nodes import MAX_RESOLUTION, SaveImage
|
||||
from comfy_extras.nodes_mask import ImageCompositeMasked
|
||||
@ -15,6 +16,7 @@ from comfy.cli_args import args
|
||||
from comfy.utils import ProgressBar, common_upscale
|
||||
import folder_paths
|
||||
import model_management
|
||||
import node_helpers
|
||||
|
||||
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
@ -1290,6 +1292,14 @@ class ImageResizeKJ:
|
||||
CATEGORY = "KJNodes/image"
|
||||
DESCRIPTION = """
|
||||
Resizes the image to the specified width and height.
|
||||
Size can be retrieved from the inputs, and the final scale
|
||||
is determined in this order of importance:
|
||||
- get_image_size
|
||||
- width_input and height_input
|
||||
- width and height widgets
|
||||
|
||||
Keep proportions keeps the aspect ratio of the image, by
|
||||
highest dimension.
|
||||
"""
|
||||
|
||||
def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, width_input=None, height_input=None, get_image_size=None):
|
||||
@ -1319,4 +1329,119 @@ Resizes the image to the specified width and height.
|
||||
scaled = common_upscale(image, width, height, upscale_method, 'disabled')
|
||||
scaled = scaled.movedim(1,-1)
|
||||
|
||||
return(scaled, scaled.shape[2], scaled.shape[1],)
|
||||
return(scaled, scaled.shape[2], scaled.shape[1],)
|
||||
|
||||
class LoadAndResizeImage:
|
||||
_color_channels = ["alpha", "red", "green", "blue"]
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
||||
return {"required":
|
||||
{
|
||||
"image": (sorted(files), {"image_upload": True}),
|
||||
"resize": ("BOOLEAN", { "default": False }),
|
||||
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
||||
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
||||
"repeat": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }),
|
||||
"keep_proportion": ("BOOLEAN", { "default": False }),
|
||||
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
|
||||
"mask_channel": (s._color_channels, ),
|
||||
},
|
||||
}
|
||||
|
||||
CATEGORY = "KJNodes/image"
|
||||
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",)
|
||||
RETURN_NAMES = ("image", "mask", "width", "height",)
|
||||
FUNCTION = "load_image"
|
||||
|
||||
def load_image(self, image, resize, width, height, repeat, keep_proportion, divisible_by, mask_channel):
|
||||
image_path = folder_paths.get_annotated_filepath(image)
|
||||
|
||||
img = node_helpers.pillow(Image.open, image_path)
|
||||
|
||||
output_images = []
|
||||
output_masks = []
|
||||
w, h = None, None
|
||||
|
||||
excluded_formats = ['MPO']
|
||||
|
||||
W, H = img.size
|
||||
if resize:
|
||||
if keep_proportion:
|
||||
ratio = min(width / W, height / H)
|
||||
width = round(W * ratio)
|
||||
height = round(H * ratio)
|
||||
else:
|
||||
if width == 0:
|
||||
width = W
|
||||
if height == 0:
|
||||
height = H
|
||||
|
||||
if divisible_by > 1:
|
||||
width = width - (width % divisible_by)
|
||||
height = height - (height % divisible_by)
|
||||
else:
|
||||
width, height = W, H
|
||||
|
||||
for i in ImageSequence.Iterator(img):
|
||||
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
||||
|
||||
if i.mode == 'I':
|
||||
i = i.point(lambda i: i * (1 / 255))
|
||||
image = i.convert("RGB")
|
||||
|
||||
if len(output_images) == 0:
|
||||
w = image.size[0]
|
||||
h = image.size[1]
|
||||
|
||||
if image.size[0] != w or image.size[1] != h:
|
||||
continue
|
||||
if resize:
|
||||
image = image.resize((width, height), Image.Resampling.BILINEAR)
|
||||
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = torch.from_numpy(image)[None,]
|
||||
mask = None
|
||||
c = mask_channel[0].upper()
|
||||
if c in i.getbands():
|
||||
if resize:
|
||||
i = i.resize((width, height), Image.Resampling.BILINEAR)
|
||||
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
|
||||
mask = torch.from_numpy(mask)
|
||||
if c == 'A':
|
||||
mask = 1. - mask
|
||||
else:
|
||||
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
||||
|
||||
output_images.append(image)
|
||||
output_masks.append(mask.unsqueeze(0))
|
||||
|
||||
if len(output_images) > 1 and img.format not in excluded_formats:
|
||||
output_image = torch.cat(output_images, dim=0)
|
||||
output_mask = torch.cat(output_masks, dim=0)
|
||||
else:
|
||||
output_image = output_images[0]
|
||||
output_mask = output_masks[0]
|
||||
if repeat > 1:
|
||||
output_image = output_image.repeat(repeat, 1, 1, 1)
|
||||
output_mask = output_mask.repeat(repeat, 1, 1)
|
||||
|
||||
|
||||
return (output_image, output_mask, width, height)
|
||||
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(s, image):
|
||||
image_path = folder_paths.get_annotated_filepath(image)
|
||||
m = hashlib.sha256()
|
||||
with open(image_path, 'rb') as f:
|
||||
m.update(f.read())
|
||||
return m.digest().hex()
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(s, image):
|
||||
if not folder_paths.exists_annotated_filepath(image):
|
||||
return "Invalid image file: {}".format(image)
|
||||
|
||||
return True
|
||||
Loading…
x
Reference in New Issue
Block a user