Add LoadAndResizeImage

This commit is contained in:
Kijai 2024-05-14 15:20:03 +03:00
parent f741ef0252
commit 7e6bd8d14a
2 changed files with 128 additions and 2 deletions

View File

@ -61,6 +61,7 @@ NODE_CONFIG = {
"ImageResizeKJ": {"class": ImageResizeKJ, "name": "Resize Image"},
"ImageUpscaleWithModelBatched": {"class": ImageUpscaleWithModelBatched, "name": "Image Upscale With Model Batched"},
"InsertImagesToBatchIndexed": {"class": InsertImagesToBatchIndexed, "name": "Insert Images To Batch Indexed"},
"LoadAndResizeImage": {"class": LoadAndResizeImage, "name": "Load & Resize Image"},
"MergeImageChannels": {"class": MergeImageChannels, "name": "Merge Image Channels"},
"PreviewAnimation": {"class": PreviewAnimation, "name": "Preview Animation"},
"RemapImageRange": {"class": RemapImageRange, "name": "Remap Image Range"},

View File

@ -7,7 +7,8 @@ import math
import os
import re
import json
from PIL import ImageGrab, ImageDraw, ImageFont, Image
import hashlib
from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageSequence, ImageOps
from nodes import MAX_RESOLUTION, SaveImage
from comfy_extras.nodes_mask import ImageCompositeMasked
@ -15,6 +16,7 @@ from comfy.cli_args import args
from comfy.utils import ProgressBar, common_upscale
import folder_paths
import model_management
import node_helpers
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
@ -1290,6 +1292,14 @@ class ImageResizeKJ:
CATEGORY = "KJNodes/image"
DESCRIPTION = """
Resizes the image to the specified width and height.
Size can be retrieved from the inputs, and the final scale
is determined in this order of importance:
- get_image_size
- width_input and height_input
- width and height widgets
Keep proportions keeps the aspect ratio of the image, by
highest dimension.
"""
def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, width_input=None, height_input=None, get_image_size=None):
@ -1319,4 +1329,119 @@ Resizes the image to the specified width and height.
scaled = common_upscale(image, width, height, upscale_method, 'disabled')
scaled = scaled.movedim(1,-1)
return(scaled, scaled.shape[2], scaled.shape[1],)
return(scaled, scaled.shape[2], scaled.shape[1],)
class LoadAndResizeImage:
_color_channels = ["alpha", "red", "green", "blue"]
@classmethod
def INPUT_TYPES(s):
input_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
return {"required":
{
"image": (sorted(files), {"image_upload": True}),
"resize": ("BOOLEAN", { "default": False }),
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
"repeat": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }),
"keep_proportion": ("BOOLEAN", { "default": False }),
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
"mask_channel": (s._color_channels, ),
},
}
CATEGORY = "KJNodes/image"
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",)
RETURN_NAMES = ("image", "mask", "width", "height",)
FUNCTION = "load_image"
def load_image(self, image, resize, width, height, repeat, keep_proportion, divisible_by, mask_channel):
image_path = folder_paths.get_annotated_filepath(image)
img = node_helpers.pillow(Image.open, image_path)
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ['MPO']
W, H = img.size
if resize:
if keep_proportion:
ratio = min(width / W, height / H)
width = round(W * ratio)
height = round(H * ratio)
else:
if width == 0:
width = W
if height == 0:
height = H
if divisible_by > 1:
width = width - (width % divisible_by)
height = height - (height % divisible_by)
else:
width, height = W, H
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
if len(output_images) == 0:
w = image.size[0]
h = image.size[1]
if image.size[0] != w or image.size[1] != h:
continue
if resize:
image = image.resize((width, height), Image.Resampling.BILINEAR)
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = None
c = mask_channel[0].upper()
if c in i.getbands():
if resize:
i = i.resize((width, height), Image.Resampling.BILINEAR)
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
mask = torch.from_numpy(mask)
if c == 'A':
mask = 1. - mask
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
if repeat > 1:
output_image = output_image.repeat(repeat, 1, 1, 1)
output_mask = output_mask.repeat(repeat, 1, 1)
return (output_image, output_mask, width, height)
@classmethod
def IS_CHANGED(s, image):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True