mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 04:44:30 +08:00
import fixes
This commit is contained in:
parent
9fa6a26689
commit
85bd6dfccb
@ -2,7 +2,7 @@ import folder_paths
|
||||
import os
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from comfy.utils import ProgressBar
|
||||
from comfy.utils import ProgressBar, load_torch_file
|
||||
import comfy.sample
|
||||
from nodes import CLIPTextEncode
|
||||
|
||||
@ -82,7 +82,7 @@ with this node pack.
|
||||
#load lora
|
||||
model_clone = model.clone()
|
||||
lora_path = folder_paths.get_full_path("intristic_loras", lora_name)
|
||||
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
|
||||
lora = load_torch_file(lora_path, safe_load=True)
|
||||
self.loaded_lora = (lora_path, lora)
|
||||
|
||||
model_clone_with_lora = comfy.sd.load_lora_for_models(model_clone, None, lora, 1.0, 0)[0]
|
||||
|
||||
@ -2195,9 +2195,10 @@ class StableZero123_BatchSchedule:
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
|
||||
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation):
|
||||
from comfy.utils import common_upscale
|
||||
output = clip_vision.encode_image(init_image)
|
||||
pooled = output.image_embeds.unsqueeze(0)
|
||||
pixels = comfy.utils.common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
||||
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
||||
encode_pixels = pixels[:,:,:,:3]
|
||||
t = vae.encode(encode_pixels)
|
||||
|
||||
@ -2488,9 +2489,10 @@ class LoadResAdapterNormalization:
|
||||
raise Exception("Invalid model path")
|
||||
else:
|
||||
print("ResAdapter: Loading ResAdapter normalization weights")
|
||||
from comfy.utils import load_torch_file
|
||||
prefix_to_remove = 'diffusion_model.'
|
||||
model_clone = model.clone()
|
||||
norm_state_dict = comfy.utils.load_torch_file(resadapter_full_path)
|
||||
norm_state_dict = load_torch_file(resadapter_full_path)
|
||||
new_values = {key[len(prefix_to_remove):]: value for key, value in norm_state_dict.items() if key.startswith(prefix_to_remove)}
|
||||
print("ResAdapter: Attempting to add patches with ResAdapter weights")
|
||||
try:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user