mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 04:44:30 +08:00
Merge branch 'main' into develop
This commit is contained in:
commit
891daeb438
3
config.json
Normal file
3
config.json
Normal file
@ -0,0 +1,3 @@
|
||||
{
|
||||
"sai_api_key": "your_api_key_here"
|
||||
}
|
||||
271
nodes.py
271
nodes.py
@ -4519,6 +4519,7 @@ class ImageAndMaskPreview(SaveImage):
|
||||
"required": {
|
||||
"mask_opacity": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"mask_color": ("STRING", {"default": "255, 255, 255"}),
|
||||
"pass_through": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"image": ("IMAGE",),
|
||||
@ -4526,15 +4527,20 @@ class ImageAndMaskPreview(SaveImage):
|
||||
},
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
RETURN_NAMES = ("composite",)
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "KJNodes"
|
||||
DESCRIPTION = """
|
||||
Preview an image or a mask, when both inputs are used
|
||||
composites the mask on top of the image.
|
||||
with pass_through on the preview is disabled and the
|
||||
composite is returned from the composite slot instead,
|
||||
this allows for the preview to be passed for video combine
|
||||
nodes for example.
|
||||
"""
|
||||
|
||||
def execute(self, mask_opacity, mask_color, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None):
|
||||
def execute(self, mask_opacity, mask_color, pass_through, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None):
|
||||
if mask is not None and image is None:
|
||||
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
||||
elif mask is None and image is not None:
|
||||
@ -4550,7 +4556,9 @@ composites the mask on top of the image.
|
||||
mask_image[:, :, :, 2] = color_list[2] // 255 # Blue channel
|
||||
|
||||
preview, = ImageCompositeMasked.composite(self, image, mask_image, 0, 0, True, mask_adjusted)
|
||||
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo)
|
||||
if pass_through:
|
||||
return (preview, )
|
||||
return(self.save_images(preview, filename_prefix, prompt, extra_pnginfo))
|
||||
|
||||
|
||||
class SplineEditor:
|
||||
@ -4605,7 +4613,256 @@ class SplineEditor:
|
||||
print(masks_out.shape)
|
||||
return (masks_out, coordinates, normalized_y_values,)
|
||||
|
||||
class StabilityAPI_SD3:
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"prompt": ("STRING", {"multiline": True}),
|
||||
"n_prompt": ("STRING", {"multiline": True}),
|
||||
"seed": ("INT", {"default": 123,"min": 0, "max": 4294967294, "step": 1}),
|
||||
"model": (
|
||||
[
|
||||
'sd3',
|
||||
'sd3-turbo',
|
||||
],
|
||||
{
|
||||
"default": 'sd3'
|
||||
}),
|
||||
"aspect_ratio": (
|
||||
[
|
||||
'1:1',
|
||||
'16:9',
|
||||
'21:9',
|
||||
'2:3',
|
||||
'3:2',
|
||||
'4:5',
|
||||
'5:4',
|
||||
'9:16',
|
||||
'9:21',
|
||||
],
|
||||
{
|
||||
"default": '1:1'
|
||||
}),
|
||||
"output_format": (
|
||||
[
|
||||
'png',
|
||||
'jpeg',
|
||||
],
|
||||
{
|
||||
"default": 'jpeg'
|
||||
}),
|
||||
},
|
||||
"optional": {
|
||||
"api_key": ("STRING", {"multiline": True}),
|
||||
"image": ("IMAGE",),
|
||||
"img2img_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"disable_metadata": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "apicall"
|
||||
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
DESCRIPTION = """
|
||||
## Calls StabilityAI API
|
||||
|
||||
Although you may have multiple keys in your account,
|
||||
you should use the same key for all requests to this API.
|
||||
|
||||
Get your API key here: https://platform.stability.ai/account/keys
|
||||
Recommended to set the key in the config.json -file under this
|
||||
node packs folder.
|
||||
# WARNING:
|
||||
Otherwise the API key may get saved in the image metadata even
|
||||
with "disable_metadata" on if the workflow includes save nodes
|
||||
separate from this node.
|
||||
|
||||
sd3 requires 6.5 credits per generation
|
||||
sd3-turbo requires 4 credits per generation
|
||||
|
||||
If no image is provided, mode is set to text-to-image
|
||||
|
||||
"""
|
||||
|
||||
def apicall(self, prompt, n_prompt, model, seed, aspect_ratio, output_format,
|
||||
img2img_strength=0.5, image=None, disable_metadata=True, api_key=""):
|
||||
from comfy.cli_args import args
|
||||
if disable_metadata:
|
||||
args.disable_metadata = True
|
||||
else:
|
||||
args.disable_metadata = False
|
||||
|
||||
import requests
|
||||
from io import BytesIO
|
||||
from torchvision import transforms
|
||||
|
||||
data = {
|
||||
"mode": "text-to-image",
|
||||
"prompt": prompt,
|
||||
"model": model,
|
||||
"seed": seed,
|
||||
"output_format": output_format
|
||||
}
|
||||
|
||||
if image is not None:
|
||||
image = image.permute(0, 3, 1, 2).squeeze(0)
|
||||
to_pil = transforms.ToPILImage()
|
||||
pil_image = to_pil(image)
|
||||
# Save the PIL Image to a BytesIO object
|
||||
buffer = BytesIO()
|
||||
pil_image.save(buffer, format='PNG')
|
||||
buffer.seek(0)
|
||||
files = {"image": ("image.png", buffer, "image/png")}
|
||||
|
||||
data["mode"] = "image-to-image"
|
||||
data["image"] = pil_image
|
||||
data["strength"] = img2img_strength
|
||||
else:
|
||||
data["aspect_ratio"] = aspect_ratio,
|
||||
files = {"none": ''}
|
||||
|
||||
if model != "sd3-turbo":
|
||||
data["negative_prompt"] = n_prompt
|
||||
|
||||
|
||||
headers={
|
||||
"accept": "image/*"
|
||||
}
|
||||
|
||||
if api_key != "":
|
||||
headers["authorization"] = api_key
|
||||
else:
|
||||
config_file_path = os.path.join(script_directory,"config.json")
|
||||
with open(config_file_path, 'r') as file:
|
||||
config = json.load(file)
|
||||
api_key_from_config = config.get("sai_api_key")
|
||||
headers["authorization"] = api_key_from_config
|
||||
|
||||
response = requests.post(
|
||||
f"https://api.stability.ai/v2beta/stable-image/generate/sd3",
|
||||
headers=headers,
|
||||
files = files,
|
||||
data = data,
|
||||
)
|
||||
|
||||
if response.status_code == 200:
|
||||
# Convert the response content to a PIL Image
|
||||
image = Image.open(BytesIO(response.content))
|
||||
# Convert the PIL Image to a PyTorch tensor
|
||||
transform = transforms.ToTensor()
|
||||
tensor_image = transform(image)
|
||||
tensor_image = tensor_image.unsqueeze(0)
|
||||
tensor_image = tensor_image.permute(0, 2, 3, 1).cpu().float()
|
||||
return (tensor_image,)
|
||||
else:
|
||||
try:
|
||||
# Attempt to parse the response as JSON
|
||||
error_data = response.json()
|
||||
raise Exception(f"Server error: {error_data}")
|
||||
except json.JSONDecodeError:
|
||||
# If the response is not valid JSON, raise a different exception
|
||||
raise Exception(f"Server error: {response.text}")
|
||||
|
||||
|
||||
class MaskOrImageToWeight:
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"output_type": (
|
||||
[
|
||||
'list',
|
||||
'list of lists',
|
||||
'pandas series',
|
||||
],
|
||||
{
|
||||
"default": 'list'
|
||||
}),
|
||||
},
|
||||
"optional": {
|
||||
"images": ("IMAGE",),
|
||||
"masks": ("MASK",),
|
||||
},
|
||||
|
||||
}
|
||||
RETURN_TYPES = ("FLOAT",)
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "KJNodes"
|
||||
DESCRIPTION = """
|
||||
Gets the mean value of mask or image
|
||||
and returns it as a float value.
|
||||
"""
|
||||
|
||||
def execute(self, output_type, images=None, masks=None):
|
||||
mean_values = []
|
||||
if masks is not None and images is None:
|
||||
for mask in masks:
|
||||
mean_values.append(mask.mean().item())
|
||||
print(mean_values)
|
||||
elif masks is None and images is not None:
|
||||
for image in images:
|
||||
mean_values.append(image.mean().item())
|
||||
elif masks is not None and images is not None:
|
||||
raise Exception("MaskOrImageToWeight: Use either mask or image input only.")
|
||||
|
||||
# Convert mean_values to the specified output_type
|
||||
if output_type == 'list':
|
||||
return mean_values,
|
||||
elif output_type == 'list of lists':
|
||||
return [[value] for value in mean_values],
|
||||
elif output_type == 'pandas series':
|
||||
try:
|
||||
import pandas as pd
|
||||
except:
|
||||
raise Exception("MaskOrImageToWeight: pandas is not installed. Please install pandas to use this output_type")
|
||||
return pd.Series(mean_values),
|
||||
else:
|
||||
raise ValueError(f"Unsupported output_type: {output_type}")
|
||||
class FloatToMask:
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"input_values": ("FLOAT", {"forceInput": True, "default": 0}),
|
||||
"width": ("INT", {"default": 100, "min": 1}),
|
||||
"height": ("INT", {"default": 100, "min": 1}),
|
||||
},
|
||||
}
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "KJNodes"
|
||||
DESCRIPTION = """
|
||||
Generates a batch of masks based on the input float values.
|
||||
The batch size is determined by the length of the input float values.
|
||||
Each mask is generated with the specified width and height.
|
||||
"""
|
||||
|
||||
def execute(self, input_values, width, height):
|
||||
import pandas as pd
|
||||
# Ensure input_values is a list
|
||||
if isinstance(input_values, (float, int)):
|
||||
input_values = [input_values]
|
||||
elif isinstance(input_values, pd.Series):
|
||||
input_values = input_values.tolist()
|
||||
elif isinstance(input_values, list) and all(isinstance(item, list) for item in input_values):
|
||||
input_values = [item for sublist in input_values for item in sublist]
|
||||
|
||||
# Generate a batch of masks based on the input_values
|
||||
masks = []
|
||||
for value in input_values:
|
||||
# Assuming value is a float between 0 and 1 representing the mask's intensity
|
||||
mask = torch.ones((height, width), dtype=torch.float32) * value
|
||||
masks.append(mask)
|
||||
masks_out = torch.stack(masks, dim=0)
|
||||
print(masks_out.shape)
|
||||
return(masks_out,)
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"INTConstant": INTConstant,
|
||||
"FloatConstant": FloatConstant,
|
||||
@ -4685,7 +4942,10 @@ NODE_CLASS_MAPPINGS = {
|
||||
"Sleep": Sleep,
|
||||
"ImagePadForOutpaintMasked": ImagePadForOutpaintMasked,
|
||||
"SplineEditor": SplineEditor,
|
||||
"ImageAndMaskPreview": ImageAndMaskPreview
|
||||
"ImageAndMaskPreview": ImageAndMaskPreview,
|
||||
"StabilityAPI_SD3": StabilityAPI_SD3,
|
||||
"MaskOrImageToWeight": MaskOrImageToWeight,
|
||||
"FloatToMask": FloatToMask
|
||||
}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"INTConstant": "INT Constant",
|
||||
@ -4767,4 +5027,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImagePadForOutpaintMasked": "Pad Image For Outpaint Masked",
|
||||
"SplineEditor": "Spline Editor",
|
||||
"ImageAndMaskPreview": "Image & Mask Preview",
|
||||
"StabilityAPI_SD3": "Stability API SD3",
|
||||
"MaskOrImageToWeight": "Mask Or Image To Weight",
|
||||
"FloatToMask": "Float To Mask",
|
||||
}
|
||||
Loading…
x
Reference in New Issue
Block a user