mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 21:04:41 +08:00
Add DrawMaskOnImage
This commit is contained in:
parent
c2712d7781
commit
8d7a3a3bab
@ -22,6 +22,7 @@ NODE_CONFIG = {
|
||||
"ConditioningSetMaskAndCombine5": {"class": ConditioningSetMaskAndCombine5, "name": "ConditioningSetMaskAndCombine5"},
|
||||
"CondPassThrough": {"class": CondPassThrough},
|
||||
#masking
|
||||
"DrawMaskOnImage": {"class": DrawMaskOnImage, "name": "Draw Mask On Image"},
|
||||
"DownloadAndLoadCLIPSeg": {"class": DownloadAndLoadCLIPSeg, "name": "(Down)load CLIPSeg"},
|
||||
"BatchCLIPSeg": {"class": BatchCLIPSeg, "name": "Batch CLIPSeg"},
|
||||
"ColorToMask": {"class": ColorToMask, "name": "Color To Mask"},
|
||||
|
||||
@ -1502,3 +1502,61 @@ class ConsolidateMasksKJ:
|
||||
print(f"Consolidated {B} masks into {len(final_masks)}")
|
||||
return (torch.stack(final_masks, dim=0),)
|
||||
|
||||
|
||||
class DrawMaskOnImage:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"image": ("IMAGE", ),
|
||||
"mask": ("MASK", ),
|
||||
"color": ("STRING", {"default": "0, 0, 0", "tooltip": "Color as RGB values in range 0-255 or 0.0-1.0, separated by commas."}),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE", )
|
||||
RETURN_NAMES = ("images",)
|
||||
FUNCTION = "apply"
|
||||
CATEGORY = "KJNodes/image"
|
||||
DESCRIPTION = "Applies the provided masks to the input images."
|
||||
|
||||
def apply(self, image, mask, color):
|
||||
B, H, W, C = image.shape
|
||||
BM, HM, WM = mask.shape
|
||||
|
||||
in_masks = mask.clone()
|
||||
|
||||
if HM != H or WM != W:
|
||||
in_masks = F.interpolate(mask.unsqueeze(1), size=(H, W), mode='nearest-exact').squeeze(1)
|
||||
if B > BM:
|
||||
in_masks = in_masks.repeat((B + BM - 1) // BM, 1, 1)[:B]
|
||||
elif BM > B:
|
||||
in_masks = in_masks[:B]
|
||||
|
||||
output_images = []
|
||||
|
||||
# Parse background color - detect if values are integers or floats
|
||||
bg_values = []
|
||||
for x in color.split(","):
|
||||
val_str = x.strip()
|
||||
if '.' in val_str:
|
||||
bg_values.append(float(val_str))
|
||||
else:
|
||||
bg_values.append(int(val_str) / 255.0)
|
||||
|
||||
background_color = torch.tensor(bg_values, dtype=torch.float32, device=image.device)
|
||||
|
||||
for i in range(B):
|
||||
curr_mask = in_masks[i]
|
||||
img_idx = min(i, B - 1)
|
||||
curr_image = image[img_idx]
|
||||
mask_expanded = curr_mask.unsqueeze(-1).expand(-1, -1, 3)
|
||||
masked_image = curr_image * (1 - mask_expanded) + background_color * (mask_expanded)
|
||||
output_images.append(masked_image)
|
||||
|
||||
# If no masks were processed, return empty tensor
|
||||
if not output_images:
|
||||
return (torch.zeros((0, H, W, 3), dtype=image.dtype),)
|
||||
|
||||
out_rgb = torch.stack(output_images, dim=0)
|
||||
|
||||
return (out_rgb, )
|
||||
Loading…
x
Reference in New Issue
Block a user