mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 21:04:41 +08:00
ReplaceImagesInBatch: allow replacing masks as well
This commit is contained in:
parent
d57154c3a8
commit
8ecf5cd05e
@ -1843,6 +1843,8 @@ Inserts images at the specified indices into the original image batch.
|
|||||||
|
|
||||||
def insertimagesfrombatch(self, original_images, images_to_insert, indexes):
|
def insertimagesfrombatch(self, original_images, images_to_insert, indexes):
|
||||||
|
|
||||||
|
input_images = original_images.clone()
|
||||||
|
|
||||||
# Parse the indexes string into a list of integers
|
# Parse the indexes string into a list of integers
|
||||||
index_list = [int(index.strip()) for index in indexes.split(',')]
|
index_list = [int(index.strip()) for index in indexes.split(',')]
|
||||||
|
|
||||||
@ -1855,9 +1857,9 @@ Inserts images at the specified indices into the original image batch.
|
|||||||
|
|
||||||
# Insert the images at the specified indices
|
# Insert the images at the specified indices
|
||||||
for index, image in zip(indices_tensor, images_to_insert):
|
for index, image in zip(indices_tensor, images_to_insert):
|
||||||
original_images[index] = image
|
input_images[index] = image
|
||||||
|
|
||||||
return (original_images,)
|
return (input_images,)
|
||||||
|
|
||||||
class PadImageBatchInterleaved:
|
class PadImageBatchInterleaved:
|
||||||
|
|
||||||
@ -1918,7 +1920,7 @@ Inserts empty frames between the images in a batch.
|
|||||||
|
|
||||||
class ReplaceImagesInBatch:
|
class ReplaceImagesInBatch:
|
||||||
|
|
||||||
RETURN_TYPES = ("IMAGE",)
|
RETURN_TYPES = ("IMAGE", "MASK",)
|
||||||
FUNCTION = "replace"
|
FUNCTION = "replace"
|
||||||
CATEGORY = "KJNodes/image"
|
CATEGORY = "KJNodes/image"
|
||||||
DESCRIPTION = """
|
DESCRIPTION = """
|
||||||
@ -1934,20 +1936,38 @@ with the replacement images.
|
|||||||
"replacement_images": ("IMAGE",),
|
"replacement_images": ("IMAGE",),
|
||||||
"start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
"start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
||||||
},
|
},
|
||||||
|
"optional": {
|
||||||
|
"original_masks": ("MASK",),
|
||||||
|
"replacement_masks": ("MASK",),
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
def replace(self, original_images, replacement_images, start_index):
|
def replace(self, original_images, replacement_images, start_index, original_masks=None, replacement_masks=None):
|
||||||
images = None
|
images = None
|
||||||
if start_index >= len(original_images):
|
if start_index >= len(original_images):
|
||||||
raise ValueError("GetImageRangeFromBatch: Start index is out of range")
|
raise ValueError("GetImageRangeFromBatch: Start index is out of range")
|
||||||
end_index = start_index + len(replacement_images)
|
end_index = start_index + len(replacement_images)
|
||||||
if end_index > len(original_images):
|
if end_index > len(original_images):
|
||||||
raise ValueError("GetImageRangeFromBatch: End index is out of range")
|
raise ValueError("GetImageRangeFromBatch: End index is out of range")
|
||||||
# Create a copy of the original_images tensor
|
|
||||||
|
if original_masks is not None and replacement_masks is not None:
|
||||||
|
original_masks_copy = original_masks.clone()
|
||||||
|
if original_masks_copy.shape[1] != replacement_masks.shape[1] or original_masks_copy.shape[2] != replacement_masks.shape[2]:
|
||||||
|
replacement_masks = common_upscale(replacement_masks.unsqueeze(1), original_masks_copy.shape[1], original_masks_copy.shape[2], "nearest-exact", "center").squeeze(0)
|
||||||
|
|
||||||
|
original_masks_copy[start_index:end_index] = replacement_masks
|
||||||
|
masks = original_masks_copy
|
||||||
|
else:
|
||||||
|
masks = torch.zeros(1,64,64, device=original_images.device, dtype=original_images.dtype)
|
||||||
|
|
||||||
original_images_copy = original_images.clone()
|
original_images_copy = original_images.clone()
|
||||||
|
|
||||||
|
if original_images_copy.shape[2] != replacement_images.shape[2] or original_images_copy.shape[3] != replacement_images.shape[3]:
|
||||||
|
replacement_images = common_upscale(replacement_images.movedim(-1, 1), original_images_copy.shape[1], original_images_copy.shape[2], "lanczos", "center").movedim(1, -1)
|
||||||
|
|
||||||
original_images_copy[start_index:end_index] = replacement_images
|
original_images_copy[start_index:end_index] = replacement_images
|
||||||
images = original_images_copy
|
images = original_images_copy
|
||||||
return (images, )
|
return (images, masks)
|
||||||
|
|
||||||
|
|
||||||
class ReverseImageBatch:
|
class ReverseImageBatch:
|
||||||
|
|||||||
@ -1649,6 +1649,7 @@ or a .txt file with RealEstate camera intrinsics and coordinates, in a 3D plot.
|
|||||||
return (tensor_img,)
|
return (tensor_img,)
|
||||||
|
|
||||||
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=1/1, base_xval=1, zval=3):
|
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=1/1, base_xval=1, zval=3):
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
||||||
vertex_std = np.array([[0, 0, 0, 1],
|
vertex_std = np.array([[0, 0, 0, 1],
|
||||||
[base_xval, -base_xval * hw_ratio, zval, 1],
|
[base_xval, -base_xval * hw_ratio, zval, 1],
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user