Continue restructuring

This commit is contained in:
kijai 2024-04-28 16:51:41 +03:00
parent 6510f7eda9
commit 98add2716b
16 changed files with 1001 additions and 969 deletions

View File

@ -17,7 +17,8 @@ This is still work in progress, like everything else.
## Javascript
### browserstatus.js
Sets the favicon to green circle when not processing anything, sets it to red when processing and shows progress percentage and the lenghth of your queue. Might clash with other scripts that affect the page title, delete this file to disable (until I figure out how to add options).
Sets the favicon to green circle when not processing anything, sets it to red when processing and shows progress percentage and the lenghth of your queue.
Default off, needs to be enabled from options, overrides Custom-Scripts favicon when enabled.
## Nodes:
@ -47,14 +48,6 @@ Mask and combine two sets of conditions, saves space.
Grows or shrinks (with negative values) mask, option to invert input, returns mask and inverted mask. Additionally Blurs the mask, this is a slow operation especially with big batches.
### CreateFadeMask
This node creates batch of single color images by interpolating between white/black levels. Useful to control mask strengths or QR code controlnet input weight when combined with MaskComposite node.
### CreateAudioMask
Work in progress, currently creates a sphere that's size is synced with audio input.
### RoundMask
![image](https://github.com/kijai/ComfyUI-KJNodes/assets/40791699/52c85202-f74e-4b96-9dac-c8bda5ddcc40)

View File

@ -1,15 +1,26 @@
from .nodes import *
from .curve_nodes import *
from .nodes.nodes import *
from .nodes.curve_nodes import *
from .nodes.batchcrop_nodes import *
from .nodes.audioscheduler_nodes import *
NODE_CLASS_MAPPINGS = {
#constants
"INTConstant": INTConstant,
"FloatConstant": FloatConstant,
"ImageBatchMulti": ImageBatchMulti,
"MaskBatchMulti": MaskBatchMulti,
"StringConstant": StringConstant,
"StringConstantMultiline": StringConstantMultiline,
#conditioning
"ConditioningMultiCombine": ConditioningMultiCombine,
"ConditioningSetMaskAndCombine": ConditioningSetMaskAndCombine,
"ConditioningSetMaskAndCombine3": ConditioningSetMaskAndCombine3,
"ConditioningSetMaskAndCombine4": ConditioningSetMaskAndCombine4,
"ConditioningSetMaskAndCombine5": ConditioningSetMaskAndCombine5,
"CondPassThrough": CondPassThrough,
#masking
"BatchCLIPSeg": BatchCLIPSeg,
"RoundMask": RoundMask,
"ResizeMask": ResizeMask,
"OffsetMask": OffsetMask,
"MaskBatchMulti": MaskBatchMulti,
"GrowMaskWithBlur": GrowMaskWithBlur,
"ColorToMask": ColorToMask,
"CreateGradientMask": CreateGradientMask,
@ -18,11 +29,14 @@ NODE_CLASS_MAPPINGS = {
"CreateFadeMask": CreateFadeMask,
"CreateFadeMaskAdvanced": CreateFadeMaskAdvanced,
"CreateFluidMask" :CreateFluidMask,
"VRAM_Debug" : VRAM_Debug,
"SomethingToString" : SomethingToString,
"CrossFadeImages": CrossFadeImages,
"EmptyLatentImagePresets": EmptyLatentImagePresets,
"CreateShapeMask": CreateShapeMask,
"CreateVoronoiMask": CreateVoronoiMask,
"CreateMagicMask": CreateMagicMask,
"RemapMaskRange": RemapMaskRange,
#images
"ImageBatchMulti": ImageBatchMulti,
"ColorMatch": ColorMatch,
"CrossFadeImages": CrossFadeImages,
"GetImageRangeFromBatch": GetImageRangeFromBatch,
"SaveImageWithAlpha": SaveImageWithAlpha,
"ReverseImageBatch": ReverseImageBatch,
@ -31,65 +45,63 @@ NODE_CLASS_MAPPINGS = {
"ImageConcanate": ImageConcanate,
"ImageBatchTestPattern": ImageBatchTestPattern,
"ReplaceImagesInBatch": ReplaceImagesInBatch,
"ImageGrabPIL": ImageGrabPIL,
"AddLabel": AddLabel,
"ImageUpscaleWithModelBatched": ImageUpscaleWithModelBatched,
"GetImagesFromBatchIndexed": GetImagesFromBatchIndexed,
"InsertImagesToBatchIndexed": InsertImagesToBatchIndexed,
"ImageBatchRepeatInterleaving": ImageBatchRepeatInterleaving,
"ImageNormalize_Neg1_To_1": ImageNormalize_Neg1_To_1,
"RemapImageRange": RemapImageRange,
"ImagePass": ImagePass,
"ImagePadForOutpaintMasked": ImagePadForOutpaintMasked,
"ImageAndMaskPreview": ImageAndMaskPreview,
#batch cropping
"BatchCropFromMask": BatchCropFromMask,
"BatchCropFromMaskAdvanced": BatchCropFromMaskAdvanced,
"FilterZeroMasksAndCorrespondingImages": FilterZeroMasksAndCorrespondingImages,
"InsertImageBatchByIndexes": InsertImageBatchByIndexes,
"BatchUncrop": BatchUncrop,
"BatchUncropAdvanced": BatchUncropAdvanced,
"BatchCLIPSeg": BatchCLIPSeg,
"RoundMask": RoundMask,
"ResizeMask": ResizeMask,
"OffsetMask": OffsetMask,
"WidgetToString": WidgetToString,
"CreateShapeMask": CreateShapeMask,
"CreateVoronoiMask": CreateVoronoiMask,
"CreateMagicMask": CreateMagicMask,
"BboxToInt": BboxToInt,
"SplitBboxes": SplitBboxes,
"ImageGrabPIL": ImageGrabPIL,
"DummyLatentOut": DummyLatentOut,
"BboxToInt": BboxToInt,
"BboxVisualize": BboxVisualize,
#noise
"GenerateNoise": GenerateNoise,
"FlipSigmasAdjusted": FlipSigmasAdjusted,
"InjectNoiseToLatent": InjectNoiseToLatent,
"AddLabel": AddLabel,
"SoundReactive": SoundReactive,
"GenerateNoise": GenerateNoise,
"StableZero123_BatchSchedule": StableZero123_BatchSchedule,
"SV3D_BatchSchedule": SV3D_BatchSchedule,
"GetImagesFromBatchIndexed": GetImagesFromBatchIndexed,
"InsertImagesToBatchIndexed": InsertImagesToBatchIndexed,
"ImageBatchRepeatInterleaving": ImageBatchRepeatInterleaving,
"CustomSigmas": CustomSigmas,
#utility
"WidgetToString": WidgetToString,
"DummyLatentOut": DummyLatentOut,
"GetLatentsFromBatchIndexed": GetLatentsFromBatchIndexed,
"ScaleBatchPromptSchedule": ScaleBatchPromptSchedule,
"CameraPoseVisualizer": CameraPoseVisualizer,
"JoinStrings": JoinStrings,
"Sleep": Sleep,
"VRAM_Debug" : VRAM_Debug,
"SomethingToString" : SomethingToString,
"EmptyLatentImagePresets": EmptyLatentImagePresets,
#audioscheduler stuff
"NormalizedAmplitudeToMask": NormalizedAmplitudeToMask,
"OffsetMaskByNormalizedAmplitude": OffsetMaskByNormalizedAmplitude,
"ImageTransformByNormalizedAmplitude": ImageTransformByNormalizedAmplitude,
"GetLatentsFromBatchIndexed": GetLatentsFromBatchIndexed,
"StringConstant": StringConstant,
"GLIGENTextBoxApplyBatch": GLIGENTextBoxApplyBatch,
"CondPassThrough": CondPassThrough,
"ImageUpscaleWithModelBatched": ImageUpscaleWithModelBatched,
"ScaleBatchPromptSchedule": ScaleBatchPromptSchedule,
"ImageNormalize_Neg1_To_1": ImageNormalize_Neg1_To_1,
"Intrinsic_lora_sampling": Intrinsic_lora_sampling,
"RemapMaskRange": RemapMaskRange,
"LoadResAdapterNormalization": LoadResAdapterNormalization,
"Superprompt": Superprompt,
"RemapImageRange": RemapImageRange,
"CameraPoseVisualizer": CameraPoseVisualizer,
"BboxVisualize": BboxVisualize,
"StringConstantMultiline": StringConstantMultiline,
"JoinStrings": JoinStrings,
"Sleep": Sleep,
"ImagePadForOutpaintMasked": ImagePadForOutpaintMasked,
"ImageAndMaskPreview": ImageAndMaskPreview,
"StabilityAPI_SD3": StabilityAPI_SD3,
#curve nodes
"SplineEditor": SplineEditor,
"CreateShapeMaskOnPath": CreateShapeMaskOnPath,
"WeightScheduleExtend": WeightScheduleExtend,
"MaskOrImageToWeight": MaskOrImageToWeight,
"WeightScheduleConvert": WeightScheduleConvert,
"FloatToMask": FloatToMask,
"CustomSigmas": CustomSigmas,
"ImagePass": ImagePass,
"SplineEditor": SplineEditor,
"CreateShapeMaskOnPath": CreateShapeMaskOnPath,
"WeightScheduleExtend": WeightScheduleExtend
#experimental
"StabilityAPI_SD3": StabilityAPI_SD3,
"SoundReactive": SoundReactive,
"StableZero123_BatchSchedule": StableZero123_BatchSchedule,
"SV3D_BatchSchedule": SV3D_BatchSchedule,
"LoadResAdapterNormalization": LoadResAdapterNormalization,
"Superprompt": Superprompt,
"GLIGENTextBoxApplyBatch": GLIGENTextBoxApplyBatch,
"Intrinsic_lora_sampling": Intrinsic_lora_sampling,
}
NODE_DISPLAY_NAME_MAPPINGS = {
@ -179,6 +191,7 @@ NODE_DISPLAY_NAME_MAPPINGS = {
"FloatToMask": "Float To Mask",
"CustomSigmas": "Custom Sigmas",
"ImagePass": "ImagePass",
#curve nodes
"SplineEditor": "Spline Editor",
"CreateShapeMaskOnPath": "Create Shape Mask On Path",
"WeightScheduleExtend": "Weight Schedule Extend"

BIN
audio.wav

Binary file not shown.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1006 B

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,230 @@
# to be used with https://github.com/a1lazydog/ComfyUI-AudioScheduler
import torch
from torchvision.transforms import functional as TF
from PIL import Image, ImageDraw
import numpy as np
from ..utility.utility import pil2tensor
from nodes import MAX_RESOLUTION
class NormalizedAmplitudeToMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_offset": ("INT", {"default": 0,"min": -255, "max": 255, "step": 1}),
"location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"size": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
"shape": (
[
'none',
'circle',
'square',
'triangle',
],
{
"default": 'none'
}),
"color": (
[
'white',
'amplitude',
],
{
"default": 'amplitude'
}),
},}
CATEGORY = "KJNodes/audio"
RETURN_TYPES = ("MASK",)
FUNCTION = "convert"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Creates masks based on the normalized amplitude.
"""
def convert(self, normalized_amp, width, height, frame_offset, shape, location_x, location_y, size, color):
# Ensure normalized_amp is an array and within the range [0, 1]
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
# Offset the amplitude values by rolling the array
normalized_amp = np.roll(normalized_amp, frame_offset)
# Initialize an empty list to hold the image tensors
out = []
# Iterate over each amplitude value to create an image
for amp in normalized_amp:
# Scale the amplitude value to cover the full range of grayscale values
if color == 'amplitude':
grayscale_value = int(amp * 255)
elif color == 'white':
grayscale_value = 255
# Convert the grayscale value to an RGB format
gray_color = (grayscale_value, grayscale_value, grayscale_value)
finalsize = size * amp
if shape == 'none':
shapeimage = Image.new("RGB", (width, height), gray_color)
else:
shapeimage = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(shapeimage)
if shape == 'circle' or shape == 'square':
# Define the bounding box for the shape
left_up_point = (location_x - finalsize, location_y - finalsize)
right_down_point = (location_x + finalsize,location_y + finalsize)
two_points = [left_up_point, right_down_point]
if shape == 'circle':
draw.ellipse(two_points, fill=gray_color)
elif shape == 'square':
draw.rectangle(two_points, fill=gray_color)
elif shape == 'triangle':
# Define the points for the triangle
left_up_point = (location_x - finalsize, location_y + finalsize) # bottom left
right_down_point = (location_x + finalsize, location_y + finalsize) # bottom right
top_point = (location_x, location_y) # top point
draw.polygon([top_point, left_up_point, right_down_point], fill=gray_color)
shapeimage = pil2tensor(shapeimage)
mask = shapeimage[:, :, :, 0]
out.append(mask)
return (torch.cat(out, dim=0),)
class OffsetMaskByNormalizedAmplitude:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"mask": ("MASK",),
"x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"rotate": ("BOOLEAN", { "default": False }),
"angle_multiplier": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }),
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = "offset"
CATEGORY = "KJNodes/audio"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Offsets masks based on the normalized amplitude.
"""
def offset(self, mask, x, y, angle_multiplier, rotate, normalized_amp):
# Ensure normalized_amp is an array and within the range [0, 1]
offsetmask = mask.clone()
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
batch_size, height, width = mask.shape
if rotate:
for i in range(batch_size):
rotation_amp = int(normalized_amp[i] * (360 * angle_multiplier))
rotation_angle = rotation_amp
offsetmask[i] = TF.rotate(offsetmask[i].unsqueeze(0), rotation_angle).squeeze(0)
if x != 0 or y != 0:
for i in range(batch_size):
offset_amp = normalized_amp[i] * 10
shift_x = min(x*offset_amp, width-1)
shift_y = min(y*offset_amp, height-1)
if shift_x != 0:
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_x), dims=1)
if shift_y != 0:
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_y), dims=0)
return offsetmask,
class ImageTransformByNormalizedAmplitude:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"zoom_scale": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }),
"x_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"y_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"cumulative": ("BOOLEAN", { "default": False }),
"image": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "amptransform"
CATEGORY = "KJNodes/audio"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Transforms image based on the normalized amplitude.
"""
def amptransform(self, image, normalized_amp, zoom_scale, cumulative, x_offset, y_offset):
# Ensure normalized_amp is an array and within the range [0, 1]
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
transformed_images = []
# Initialize the cumulative zoom factor
prev_amp = 0.0
for i in range(image.shape[0]):
img = image[i] # Get the i-th image in the batch
amp = normalized_amp[i] # Get the corresponding amplitude value
# Incrementally increase the cumulative zoom factor
if cumulative:
prev_amp += amp
amp += prev_amp
# Convert the image tensor from BxHxWxC to CxHxW format expected by torchvision
img = img.permute(2, 0, 1)
# Convert PyTorch tensor to PIL Image for processing
pil_img = TF.to_pil_image(img)
# Calculate the crop size based on the amplitude
width, height = pil_img.size
crop_size = int(min(width, height) * (1 - amp * zoom_scale))
crop_size = max(crop_size, 1)
# Calculate the crop box coordinates (centered crop)
left = (width - crop_size) // 2
top = (height - crop_size) // 2
right = (width + crop_size) // 2
bottom = (height + crop_size) // 2
# Crop and resize back to original size
cropped_img = TF.crop(pil_img, top, left, crop_size, crop_size)
resized_img = TF.resize(cropped_img, (height, width))
# Convert back to tensor in CxHxW format
tensor_img = TF.to_tensor(resized_img)
# Convert the tensor back to BxHxWxC format
tensor_img = tensor_img.permute(1, 2, 0)
# Offset the image based on the amplitude
offset_amp = amp * 10 # Calculate the offset magnitude based on the amplitude
shift_x = min(x_offset * offset_amp, img.shape[1] - 1) # Calculate the shift in x direction
shift_y = min(y_offset * offset_amp, img.shape[0] - 1) # Calculate the shift in y direction
# Apply the offset to the image tensor
if shift_x != 0:
tensor_img = torch.roll(tensor_img, shifts=int(shift_x), dims=1)
if shift_y != 0:
tensor_img = torch.roll(tensor_img, shifts=int(shift_y), dims=0)
# Add to the list
transformed_images.append(tensor_img)
# Stack all transformed images into a batch
transformed_batch = torch.stack(transformed_images)
return (transformed_batch,)

677
nodes/batchcrop_nodes.py Normal file
View File

@ -0,0 +1,677 @@
from ..utility.utility import tensor2pil, pil2tensor
from PIL import Image, ImageDraw, ImageFilter
import numpy as np
import torch
from torchvision.transforms import Resize, CenterCrop, InterpolationMode
import math
#based on nodes from mtb https://github.com/melMass/comfy_mtb
class BatchCropFromMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"masks": ("MASK",),
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"BBOX",
"INT",
"INT",
)
RETURN_NAMES = (
"original_images",
"cropped_images",
"bboxes",
"width",
"height",
)
FUNCTION = "crop"
CATEGORY = "KJNodes/masking"
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
if alpha == 0:
return prev_bbox_size
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
def smooth_center(self, prev_center, curr_center, alpha=0.5):
if alpha == 0:
return prev_center
return (
round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1])
)
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
bounding_boxes = []
cropped_images = []
self.max_bbox_width = 0
self.max_bbox_height = 0
# First, calculate the maximum bounding box size across all masks
curr_max_bbox_width = 0
curr_max_bbox_height = 0
for mask in masks:
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
width = max_x - min_x
height = max_y - min_y
curr_max_bbox_width = max(curr_max_bbox_width, width)
curr_max_bbox_height = max(curr_max_bbox_height, height)
# Smooth the changes in the bounding box size
self.max_bbox_width = self.smooth_bbox_size(self.max_bbox_width, curr_max_bbox_width, bbox_smooth_alpha)
self.max_bbox_height = self.smooth_bbox_size(self.max_bbox_height, curr_max_bbox_height, bbox_smooth_alpha)
# Apply the crop size multiplier
self.max_bbox_width = round(self.max_bbox_width * crop_size_mult)
self.max_bbox_height = round(self.max_bbox_height * crop_size_mult)
bbox_aspect_ratio = self.max_bbox_width / self.max_bbox_height
# Then, for each mask and corresponding image...
for i, (mask, img) in enumerate(zip(masks, original_images)):
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Calculate center of bounding box
center_x = np.mean(non_zero_indices[1])
center_y = np.mean(non_zero_indices[0])
curr_center = (round(center_x), round(center_y))
# If this is the first frame, initialize prev_center with curr_center
if not hasattr(self, 'prev_center'):
self.prev_center = curr_center
# Smooth the changes in the center coordinates from the second frame onwards
if i > 0:
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
else:
center = curr_center
# Update prev_center for the next frame
self.prev_center = center
# Create bounding box using max_bbox_width and max_bbox_height
half_box_width = round(self.max_bbox_width / 2)
half_box_height = round(self.max_bbox_height / 2)
min_x = max(0, center[0] - half_box_width)
max_x = min(img.shape[1], center[0] + half_box_width)
min_y = max(0, center[1] - half_box_height)
max_y = min(img.shape[0], center[1] + half_box_height)
# Append bounding box coordinates
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
# Crop the image from the bounding box
cropped_img = img[min_y:max_y, min_x:max_x, :]
# Calculate the new dimensions while maintaining the aspect ratio
new_height = min(cropped_img.shape[0], self.max_bbox_height)
new_width = round(new_height * bbox_aspect_ratio)
# Resize the image
resize_transform = Resize((new_height, new_width))
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
# Perform the center crop to the desired size
crop_transform = CenterCrop((self.max_bbox_height, self.max_bbox_width)) # swap the order here if necessary
cropped_resized_img = crop_transform(resized_img)
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
cropped_out = torch.stack(cropped_images, dim=0)
return (original_images, cropped_out, bounding_boxes, self.max_bbox_width, self.max_bbox_height, )
def bbox_to_region(bbox, target_size=None):
bbox = bbox_check(bbox, target_size)
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])
def bbox_check(bbox, target_size=None):
if not target_size:
return bbox
new_bbox = (
bbox[0],
bbox[1],
min(target_size[0] - bbox[0], bbox[2]),
min(target_size[1] - bbox[1], bbox[3]),
)
return new_bbox
class BatchUncrop:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"cropped_images": ("IMAGE",),
"bboxes": ("BBOX",),
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"border_top": ("BOOLEAN", {"default": True}),
"border_bottom": ("BOOLEAN", {"default": True}),
"border_left": ("BOOLEAN", {"default": True}),
"border_right": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "uncrop"
CATEGORY = "KJNodes/masking"
def uncrop(self, original_images, cropped_images, bboxes, border_blending, crop_rescale, border_top, border_bottom, border_left, border_right):
def inset_border(image, border_width, border_color, border_top, border_bottom, border_left, border_right):
draw = ImageDraw.Draw(image)
width, height = image.size
if border_top:
draw.rectangle((0, 0, width, border_width), fill=border_color)
if border_bottom:
draw.rectangle((0, height - border_width, width, height), fill=border_color)
if border_left:
draw.rectangle((0, 0, border_width, height), fill=border_color)
if border_right:
draw.rectangle((width - border_width, 0, width, height), fill=border_color)
return image
if len(original_images) != len(cropped_images):
raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")
# Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
if len(bboxes) > len(original_images):
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
bboxes = bboxes[:len(original_images)]
elif len(bboxes) < len(original_images):
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
input_images = tensor2pil(original_images)
crop_imgs = tensor2pil(cropped_images)
out_images = []
for i in range(len(input_images)):
img = input_images[i]
crop = crop_imgs[i]
bbox = bboxes[i]
# uncrop the image based on the bounding box
bb_x, bb_y, bb_width, bb_height = bbox
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
# scale factors
scale_x = crop_rescale
scale_y = crop_rescale
# scaled paste_region
paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))
# rescale the crop image to fit the paste_region
crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
crop_img = crop.convert("RGB")
if border_blending > 1.0:
border_blending = 1.0
elif border_blending < 0.0:
border_blending = 0.0
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
blend = img.convert("RGBA")
mask = Image.new("L", img.size, 0)
mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0), border_top, border_bottom, border_left, border_right)
mask.paste(mask_block, paste_region)
blend.paste(crop_img, paste_region)
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
blend.putalpha(mask)
img = Image.alpha_composite(img.convert("RGBA"), blend)
out_images.append(img.convert("RGB"))
return (pil2tensor(out_images),)
class BatchCropFromMaskAdvanced:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"masks": ("MASK",),
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"MASK",
"IMAGE",
"MASK",
"BBOX",
"BBOX",
"INT",
"INT",
)
RETURN_NAMES = (
"original_images",
"cropped_images",
"cropped_masks",
"combined_crop_image",
"combined_crop_masks",
"bboxes",
"combined_bounding_box",
"bbox_width",
"bbox_height",
)
FUNCTION = "crop"
CATEGORY = "KJNodes/masking"
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
def smooth_center(self, prev_center, curr_center, alpha=0.5):
return (round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1]))
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
bounding_boxes = []
combined_bounding_box = []
cropped_images = []
cropped_masks = []
cropped_masks_out = []
combined_crop_out = []
combined_cropped_images = []
combined_cropped_masks = []
def calculate_bbox(mask):
non_zero_indices = np.nonzero(np.array(mask))
# handle empty masks
min_x, max_x, min_y, max_y = 0, 0, 0, 0
if len(non_zero_indices[1]) > 0 and len(non_zero_indices[0]) > 0:
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
width = max_x - min_x
height = max_y - min_y
bbox_size = max(width, height)
return min_x, max_x, min_y, max_y, bbox_size
combined_mask = torch.max(masks, dim=0)[0]
_mask = tensor2pil(combined_mask)[0]
new_min_x, new_max_x, new_min_y, new_max_y, combined_bbox_size = calculate_bbox(_mask)
center_x = (new_min_x + new_max_x) / 2
center_y = (new_min_y + new_max_y) / 2
half_box_size = round(combined_bbox_size // 2)
new_min_x = max(0, round(center_x - half_box_size))
new_max_x = min(original_images[0].shape[1], round(center_x + half_box_size))
new_min_y = max(0, round(center_y - half_box_size))
new_max_y = min(original_images[0].shape[0], round(center_y + half_box_size))
combined_bounding_box.append((new_min_x, new_min_y, new_max_x - new_min_x, new_max_y - new_min_y))
self.max_bbox_size = 0
# First, calculate the maximum bounding box size across all masks
curr_max_bbox_size = max(calculate_bbox(tensor2pil(mask)[0])[-1] for mask in masks)
# Smooth the changes in the bounding box size
self.max_bbox_size = self.smooth_bbox_size(self.max_bbox_size, curr_max_bbox_size, bbox_smooth_alpha)
# Apply the crop size multiplier
self.max_bbox_size = round(self.max_bbox_size * crop_size_mult)
# Make sure max_bbox_size is divisible by 16, if not, round it upwards so it is
self.max_bbox_size = math.ceil(self.max_bbox_size / 16) * 16
if self.max_bbox_size > original_images[0].shape[0] or self.max_bbox_size > original_images[0].shape[1]:
# max_bbox_size can only be as big as our input's width or height, and it has to be even
self.max_bbox_size = math.floor(min(original_images[0].shape[0], original_images[0].shape[1]) / 2) * 2
# Then, for each mask and corresponding image...
for i, (mask, img) in enumerate(zip(masks, original_images)):
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
# check for empty masks
if len(non_zero_indices[0]) > 0 and len(non_zero_indices[1]) > 0:
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Calculate center of bounding box
center_x = np.mean(non_zero_indices[1])
center_y = np.mean(non_zero_indices[0])
curr_center = (round(center_x), round(center_y))
# If this is the first frame, initialize prev_center with curr_center
if not hasattr(self, 'prev_center'):
self.prev_center = curr_center
# Smooth the changes in the center coordinates from the second frame onwards
if i > 0:
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
else:
center = curr_center
# Update prev_center for the next frame
self.prev_center = center
# Create bounding box using max_bbox_size
half_box_size = self.max_bbox_size // 2
min_x = max(0, center[0] - half_box_size)
max_x = min(img.shape[1], center[0] + half_box_size)
min_y = max(0, center[1] - half_box_size)
max_y = min(img.shape[0], center[1] + half_box_size)
# Append bounding box coordinates
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
# Crop the image from the bounding box
cropped_img = img[min_y:max_y, min_x:max_x, :]
cropped_mask = mask[min_y:max_y, min_x:max_x]
# Resize the cropped image to a fixed size
new_size = max(cropped_img.shape[0], cropped_img.shape[1])
resize_transform = Resize(new_size, interpolation=InterpolationMode.NEAREST, max_size=max(img.shape[0], img.shape[1]))
resized_mask = resize_transform(cropped_mask.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
# Perform the center crop to the desired size
# Constrain the crop to the smaller of our bbox or our image so we don't expand past the image dimensions.
crop_transform = CenterCrop((min(self.max_bbox_size, resized_img.shape[1]), min(self.max_bbox_size, resized_img.shape[2])))
cropped_resized_img = crop_transform(resized_img)
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
cropped_resized_mask = crop_transform(resized_mask)
cropped_masks.append(cropped_resized_mask)
combined_cropped_img = original_images[i][new_min_y:new_max_y, new_min_x:new_max_x, :]
combined_cropped_images.append(combined_cropped_img)
combined_cropped_mask = masks[i][new_min_y:new_max_y, new_min_x:new_max_x]
combined_cropped_masks.append(combined_cropped_mask)
else:
bounding_boxes.append((0, 0, img.shape[1], img.shape[0]))
cropped_images.append(img)
cropped_masks.append(mask)
combined_cropped_images.append(img)
combined_cropped_masks.append(mask)
cropped_out = torch.stack(cropped_images, dim=0)
combined_crop_out = torch.stack(combined_cropped_images, dim=0)
cropped_masks_out = torch.stack(cropped_masks, dim=0)
combined_crop_mask_out = torch.stack(combined_cropped_masks, dim=0)
return (original_images, cropped_out, cropped_masks_out, combined_crop_out, combined_crop_mask_out, bounding_boxes, combined_bounding_box, self.max_bbox_size, self.max_bbox_size)
class FilterZeroMasksAndCorrespondingImages:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"masks": ("MASK",),
},
"optional": {
"original_images": ("IMAGE",),
},
}
RETURN_TYPES = ("MASK", "IMAGE", "IMAGE", "INDEXES",)
RETURN_NAMES = ("non_zero_masks_out", "non_zero_mask_images_out", "zero_mask_images_out", "zero_mask_images_out_indexes",)
FUNCTION = "filter"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Filter out all the empty (i.e. all zero) mask in masks
Also filter out all the corresponding images in original_images by indexes if provide
original_images (optional): If provided, need have same length as masks.
"""
def filter(self, masks, original_images=None):
non_zero_masks = []
non_zero_mask_images = []
zero_mask_images = []
zero_mask_images_indexes = []
masks_num = len(masks)
also_process_images = False
if original_images is not None:
imgs_num = len(original_images)
if len(original_images) == masks_num:
also_process_images = True
else:
print(f"[WARNING] ignore input: original_images, due to number of original_images ({imgs_num}) is not equal to number of masks ({masks_num})")
for i in range(masks_num):
non_zero_num = np.count_nonzero(np.array(masks[i]))
if non_zero_num > 0:
non_zero_masks.append(masks[i])
if also_process_images:
non_zero_mask_images.append(original_images[i])
else:
zero_mask_images.append(original_images[i])
zero_mask_images_indexes.append(i)
non_zero_masks_out = torch.stack(non_zero_masks, dim=0)
non_zero_mask_images_out = zero_mask_images_out = zero_mask_images_out_indexes = None
if also_process_images:
non_zero_mask_images_out = torch.stack(non_zero_mask_images, dim=0)
if len(zero_mask_images) > 0:
zero_mask_images_out = torch.stack(zero_mask_images, dim=0)
zero_mask_images_out_indexes = zero_mask_images_indexes
return (non_zero_masks_out, non_zero_mask_images_out, zero_mask_images_out, zero_mask_images_out_indexes)
class InsertImageBatchByIndexes:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"images_to_insert": ("IMAGE",),
"insert_indexes": ("INDEXES",),
},
}
RETURN_TYPES = ("IMAGE", )
RETURN_NAMES = ("images_after_insert", )
FUNCTION = "insert"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
This node is designed to be use with node FilterZeroMasksAndCorrespondingImages
It inserts the images_to_insert into images according to insert_indexes
Returns:
images_after_insert: updated original images with origonal sequence order
"""
def insert(self, images, images_to_insert, insert_indexes):
images_after_insert = images
if images_to_insert is not None and insert_indexes is not None:
images_to_insert_num = len(images_to_insert)
insert_indexes_num = len(insert_indexes)
if images_to_insert_num == insert_indexes_num:
images_after_insert = []
i_images = 0
for i in range(len(images) + images_to_insert_num):
if i in insert_indexes:
images_after_insert.append(images_to_insert[insert_indexes.index(i)])
else:
images_after_insert.append(images[i_images])
i_images += 1
images_after_insert = torch.stack(images_after_insert, dim=0)
else:
print(f"[WARNING] skip this node, due to number of images_to_insert ({images_to_insert_num}) is not equal to number of insert_indexes ({insert_indexes_num})")
return (images_after_insert, )
def bbox_to_region(bbox, target_size=None):
bbox = bbox_check(bbox, target_size)
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])
def bbox_check(bbox, target_size=None):
if not target_size:
return bbox
new_bbox = (
bbox[0],
bbox[1],
min(target_size[0] - bbox[0], bbox[2]),
min(target_size[1] - bbox[1], bbox[3]),
)
return new_bbox
class BatchUncropAdvanced:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"cropped_images": ("IMAGE",),
"cropped_masks": ("MASK",),
"combined_crop_mask": ("MASK",),
"bboxes": ("BBOX",),
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"use_combined_mask": ("BOOLEAN", {"default": False}),
"use_square_mask": ("BOOLEAN", {"default": True}),
},
"optional": {
"combined_bounding_box": ("BBOX", {"default": None}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "uncrop"
CATEGORY = "KJNodes/masking"
def uncrop(self, original_images, cropped_images, cropped_masks, combined_crop_mask, bboxes, border_blending, crop_rescale, use_combined_mask, use_square_mask, combined_bounding_box = None):
def inset_border(image, border_width=20, border_color=(0)):
width, height = image.size
bordered_image = Image.new(image.mode, (width, height), border_color)
bordered_image.paste(image, (0, 0))
draw = ImageDraw.Draw(bordered_image)
draw.rectangle((0, 0, width - 1, height - 1), outline=border_color, width=border_width)
return bordered_image
if len(original_images) != len(cropped_images):
raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")
# Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
if len(bboxes) > len(original_images):
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
bboxes = bboxes[:len(original_images)]
elif len(bboxes) < len(original_images):
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
crop_imgs = tensor2pil(cropped_images)
input_images = tensor2pil(original_images)
out_images = []
for i in range(len(input_images)):
img = input_images[i]
crop = crop_imgs[i]
bbox = bboxes[i]
if use_combined_mask:
bb_x, bb_y, bb_width, bb_height = combined_bounding_box[0]
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
mask = combined_crop_mask[i]
else:
bb_x, bb_y, bb_width, bb_height = bbox
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
mask = cropped_masks[i]
# scale paste_region
scale_x = scale_y = crop_rescale
paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))
# rescale the crop image to fit the paste_region
crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
crop_img = crop.convert("RGB")
#border blending
if border_blending > 1.0:
border_blending = 1.0
elif border_blending < 0.0:
border_blending = 0.0
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
blend = img.convert("RGBA")
if use_square_mask:
mask = Image.new("L", img.size, 0)
mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0))
mask.paste(mask_block, paste_region)
else:
original_mask = tensor2pil(mask)[0]
original_mask = original_mask.resize((paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]))
mask = Image.new("L", img.size, 0)
mask.paste(original_mask, paste_region)
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
blend.paste(crop_img, paste_region)
blend.putalpha(mask)
img = Image.alpha_composite(img.convert("RGBA"), blend)
out_images.append(img.convert("RGB"))
return (pil2tensor(out_images),)
class SplitBboxes:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"bboxes": ("BBOX",),
"index": ("INT", {"default": 0,"min": 0, "max": 99999999, "step": 1}),
},
}
RETURN_TYPES = ("BBOX","BBOX",)
RETURN_NAMES = ("bboxes_a","bboxes_b",)
FUNCTION = "splitbbox"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Splits the specified bbox list at the given index into two lists.
"""
def splitbbox(self, bboxes, index):
bboxes_a = bboxes[:index] # Sub-list from the start of bboxes up to (but not including) the index
bboxes_b = bboxes[index:] # Sub-list from the index to the end of bboxes
return (bboxes_a, bboxes_b,)

View File

@ -2,7 +2,7 @@ import torch
import json
from PIL import Image, ImageDraw
import numpy as np
from .utility import pil2tensor
from ..utility.utility import pil2tensor
class SplineEditor:
@ -307,7 +307,6 @@ Converts different value lists/series to another type.
import pandas as pd
input_type = self.detect_input_type(input_values)
# Convert input_values to a list of floats
if input_type == 'list of lists':
float_values = [item for sublist in input_values for item in sublist]
elif input_type == 'pandas series':

View File

@ -1,6 +1,5 @@
import torch
import torch.nn.functional as F
from torchvision.transforms import Resize, CenterCrop, InterpolationMode
from torchvision.transforms import functional as TF
import scipy.ndimage
@ -17,9 +16,11 @@ import random
import math
import model_management
from nodes import MAX_RESOLUTION, SaveImage
from nodes import MAX_RESOLUTION, SaveImage, CLIPTextEncode
from comfy_extras.nodes_mask import ImageCompositeMasked
import comfy.sample
import folder_paths
from ..utility.utility import tensor2pil, pil2tensor
script_directory = os.path.dirname(os.path.abspath(__file__))
folder_paths.add_model_folder_path("kjnodes_fonts", os.path.join(script_directory, "fonts"))
@ -141,7 +142,7 @@ class CreateFluidMask:
}
#using code from https://github.com/GregTJ/stable-fluids
def createfluidmask(self, frames, width, height, invert, inflow_count, inflow_velocity, inflow_radius, inflow_padding, inflow_duration):
from .fluid import Fluid
from ..utility.fluid import Fluid
from scipy.spatial import erf
out = []
masks = []
@ -1845,655 +1846,6 @@ class ImageBatchTestPattern:
return (out_tensor,)
#based on nodes from mtb https://github.com/melMass/comfy_mtb
from .utility import tensor2pil, pil2tensor
class BatchCropFromMask:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"masks": ("MASK",),
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"BBOX",
"INT",
"INT",
)
RETURN_NAMES = (
"original_images",
"cropped_images",
"bboxes",
"width",
"height",
)
FUNCTION = "crop"
CATEGORY = "KJNodes/masking"
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
if alpha == 0:
return prev_bbox_size
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
def smooth_center(self, prev_center, curr_center, alpha=0.5):
if alpha == 0:
return prev_center
return (
round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1])
)
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
bounding_boxes = []
cropped_images = []
self.max_bbox_width = 0
self.max_bbox_height = 0
# First, calculate the maximum bounding box size across all masks
curr_max_bbox_width = 0
curr_max_bbox_height = 0
for mask in masks:
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
width = max_x - min_x
height = max_y - min_y
curr_max_bbox_width = max(curr_max_bbox_width, width)
curr_max_bbox_height = max(curr_max_bbox_height, height)
# Smooth the changes in the bounding box size
self.max_bbox_width = self.smooth_bbox_size(self.max_bbox_width, curr_max_bbox_width, bbox_smooth_alpha)
self.max_bbox_height = self.smooth_bbox_size(self.max_bbox_height, curr_max_bbox_height, bbox_smooth_alpha)
# Apply the crop size multiplier
self.max_bbox_width = round(self.max_bbox_width * crop_size_mult)
self.max_bbox_height = round(self.max_bbox_height * crop_size_mult)
bbox_aspect_ratio = self.max_bbox_width / self.max_bbox_height
# Then, for each mask and corresponding image...
for i, (mask, img) in enumerate(zip(masks, original_images)):
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Calculate center of bounding box
center_x = np.mean(non_zero_indices[1])
center_y = np.mean(non_zero_indices[0])
curr_center = (round(center_x), round(center_y))
# If this is the first frame, initialize prev_center with curr_center
if not hasattr(self, 'prev_center'):
self.prev_center = curr_center
# Smooth the changes in the center coordinates from the second frame onwards
if i > 0:
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
else:
center = curr_center
# Update prev_center for the next frame
self.prev_center = center
# Create bounding box using max_bbox_width and max_bbox_height
half_box_width = round(self.max_bbox_width / 2)
half_box_height = round(self.max_bbox_height / 2)
min_x = max(0, center[0] - half_box_width)
max_x = min(img.shape[1], center[0] + half_box_width)
min_y = max(0, center[1] - half_box_height)
max_y = min(img.shape[0], center[1] + half_box_height)
# Append bounding box coordinates
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
# Crop the image from the bounding box
cropped_img = img[min_y:max_y, min_x:max_x, :]
# Calculate the new dimensions while maintaining the aspect ratio
new_height = min(cropped_img.shape[0], self.max_bbox_height)
new_width = round(new_height * bbox_aspect_ratio)
# Resize the image
resize_transform = Resize((new_height, new_width))
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
# Perform the center crop to the desired size
crop_transform = CenterCrop((self.max_bbox_height, self.max_bbox_width)) # swap the order here if necessary
cropped_resized_img = crop_transform(resized_img)
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
cropped_out = torch.stack(cropped_images, dim=0)
return (original_images, cropped_out, bounding_boxes, self.max_bbox_width, self.max_bbox_height, )
def bbox_to_region(bbox, target_size=None):
bbox = bbox_check(bbox, target_size)
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])
def bbox_check(bbox, target_size=None):
if not target_size:
return bbox
new_bbox = (
bbox[0],
bbox[1],
min(target_size[0] - bbox[0], bbox[2]),
min(target_size[1] - bbox[1], bbox[3]),
)
return new_bbox
class BatchUncrop:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"cropped_images": ("IMAGE",),
"bboxes": ("BBOX",),
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"border_top": ("BOOLEAN", {"default": True}),
"border_bottom": ("BOOLEAN", {"default": True}),
"border_left": ("BOOLEAN", {"default": True}),
"border_right": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "uncrop"
CATEGORY = "KJNodes/masking"
def uncrop(self, original_images, cropped_images, bboxes, border_blending, crop_rescale, border_top, border_bottom, border_left, border_right):
def inset_border(image, border_width, border_color, border_top, border_bottom, border_left, border_right):
draw = ImageDraw.Draw(image)
width, height = image.size
if border_top:
draw.rectangle((0, 0, width, border_width), fill=border_color)
if border_bottom:
draw.rectangle((0, height - border_width, width, height), fill=border_color)
if border_left:
draw.rectangle((0, 0, border_width, height), fill=border_color)
if border_right:
draw.rectangle((width - border_width, 0, width, height), fill=border_color)
return image
if len(original_images) != len(cropped_images):
raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")
# Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
if len(bboxes) > len(original_images):
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
bboxes = bboxes[:len(original_images)]
elif len(bboxes) < len(original_images):
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
input_images = tensor2pil(original_images)
crop_imgs = tensor2pil(cropped_images)
out_images = []
for i in range(len(input_images)):
img = input_images[i]
crop = crop_imgs[i]
bbox = bboxes[i]
# uncrop the image based on the bounding box
bb_x, bb_y, bb_width, bb_height = bbox
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
# scale factors
scale_x = crop_rescale
scale_y = crop_rescale
# scaled paste_region
paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))
# rescale the crop image to fit the paste_region
crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
crop_img = crop.convert("RGB")
if border_blending > 1.0:
border_blending = 1.0
elif border_blending < 0.0:
border_blending = 0.0
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
blend = img.convert("RGBA")
mask = Image.new("L", img.size, 0)
mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0), border_top, border_bottom, border_left, border_right)
mask.paste(mask_block, paste_region)
blend.paste(crop_img, paste_region)
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
blend.putalpha(mask)
img = Image.alpha_composite(img.convert("RGBA"), blend)
out_images.append(img.convert("RGB"))
return (pil2tensor(out_images),)
class BatchCropFromMaskAdvanced:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"masks": ("MASK",),
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = (
"IMAGE",
"IMAGE",
"MASK",
"IMAGE",
"MASK",
"BBOX",
"BBOX",
"INT",
"INT",
)
RETURN_NAMES = (
"original_images",
"cropped_images",
"cropped_masks",
"combined_crop_image",
"combined_crop_masks",
"bboxes",
"combined_bounding_box",
"bbox_width",
"bbox_height",
)
FUNCTION = "crop"
CATEGORY = "KJNodes/masking"
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
def smooth_center(self, prev_center, curr_center, alpha=0.5):
return (round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1]))
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
bounding_boxes = []
combined_bounding_box = []
cropped_images = []
cropped_masks = []
cropped_masks_out = []
combined_crop_out = []
combined_cropped_images = []
combined_cropped_masks = []
def calculate_bbox(mask):
non_zero_indices = np.nonzero(np.array(mask))
# handle empty masks
min_x, max_x, min_y, max_y = 0, 0, 0, 0
if len(non_zero_indices[1]) > 0 and len(non_zero_indices[0]) > 0:
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
width = max_x - min_x
height = max_y - min_y
bbox_size = max(width, height)
return min_x, max_x, min_y, max_y, bbox_size
combined_mask = torch.max(masks, dim=0)[0]
_mask = tensor2pil(combined_mask)[0]
new_min_x, new_max_x, new_min_y, new_max_y, combined_bbox_size = calculate_bbox(_mask)
center_x = (new_min_x + new_max_x) / 2
center_y = (new_min_y + new_max_y) / 2
half_box_size = round(combined_bbox_size // 2)
new_min_x = max(0, round(center_x - half_box_size))
new_max_x = min(original_images[0].shape[1], round(center_x + half_box_size))
new_min_y = max(0, round(center_y - half_box_size))
new_max_y = min(original_images[0].shape[0], round(center_y + half_box_size))
combined_bounding_box.append((new_min_x, new_min_y, new_max_x - new_min_x, new_max_y - new_min_y))
self.max_bbox_size = 0
# First, calculate the maximum bounding box size across all masks
curr_max_bbox_size = max(calculate_bbox(tensor2pil(mask)[0])[-1] for mask in masks)
# Smooth the changes in the bounding box size
self.max_bbox_size = self.smooth_bbox_size(self.max_bbox_size, curr_max_bbox_size, bbox_smooth_alpha)
# Apply the crop size multiplier
self.max_bbox_size = round(self.max_bbox_size * crop_size_mult)
# Make sure max_bbox_size is divisible by 16, if not, round it upwards so it is
self.max_bbox_size = math.ceil(self.max_bbox_size / 16) * 16
if self.max_bbox_size > original_images[0].shape[0] or self.max_bbox_size > original_images[0].shape[1]:
# max_bbox_size can only be as big as our input's width or height, and it has to be even
self.max_bbox_size = math.floor(min(original_images[0].shape[0], original_images[0].shape[1]) / 2) * 2
# Then, for each mask and corresponding image...
for i, (mask, img) in enumerate(zip(masks, original_images)):
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
# check for empty masks
if len(non_zero_indices[0]) > 0 and len(non_zero_indices[1]) > 0:
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Calculate center of bounding box
center_x = np.mean(non_zero_indices[1])
center_y = np.mean(non_zero_indices[0])
curr_center = (round(center_x), round(center_y))
# If this is the first frame, initialize prev_center with curr_center
if not hasattr(self, 'prev_center'):
self.prev_center = curr_center
# Smooth the changes in the center coordinates from the second frame onwards
if i > 0:
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
else:
center = curr_center
# Update prev_center for the next frame
self.prev_center = center
# Create bounding box using max_bbox_size
half_box_size = self.max_bbox_size // 2
min_x = max(0, center[0] - half_box_size)
max_x = min(img.shape[1], center[0] + half_box_size)
min_y = max(0, center[1] - half_box_size)
max_y = min(img.shape[0], center[1] + half_box_size)
# Append bounding box coordinates
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
# Crop the image from the bounding box
cropped_img = img[min_y:max_y, min_x:max_x, :]
cropped_mask = mask[min_y:max_y, min_x:max_x]
# Resize the cropped image to a fixed size
new_size = max(cropped_img.shape[0], cropped_img.shape[1])
resize_transform = Resize(new_size, interpolation=InterpolationMode.NEAREST, max_size=max(img.shape[0], img.shape[1]))
resized_mask = resize_transform(cropped_mask.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)
resized_img = resize_transform(cropped_img.permute(2, 0, 1))
# Perform the center crop to the desired size
# Constrain the crop to the smaller of our bbox or our image so we don't expand past the image dimensions.
crop_transform = CenterCrop((min(self.max_bbox_size, resized_img.shape[1]), min(self.max_bbox_size, resized_img.shape[2])))
cropped_resized_img = crop_transform(resized_img)
cropped_images.append(cropped_resized_img.permute(1, 2, 0))
cropped_resized_mask = crop_transform(resized_mask)
cropped_masks.append(cropped_resized_mask)
combined_cropped_img = original_images[i][new_min_y:new_max_y, new_min_x:new_max_x, :]
combined_cropped_images.append(combined_cropped_img)
combined_cropped_mask = masks[i][new_min_y:new_max_y, new_min_x:new_max_x]
combined_cropped_masks.append(combined_cropped_mask)
else:
bounding_boxes.append((0, 0, img.shape[1], img.shape[0]))
cropped_images.append(img)
cropped_masks.append(mask)
combined_cropped_images.append(img)
combined_cropped_masks.append(mask)
cropped_out = torch.stack(cropped_images, dim=0)
combined_crop_out = torch.stack(combined_cropped_images, dim=0)
cropped_masks_out = torch.stack(cropped_masks, dim=0)
combined_crop_mask_out = torch.stack(combined_cropped_masks, dim=0)
return (original_images, cropped_out, cropped_masks_out, combined_crop_out, combined_crop_mask_out, bounding_boxes, combined_bounding_box, self.max_bbox_size, self.max_bbox_size)
class FilterZeroMasksAndCorrespondingImages:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"masks": ("MASK",),
},
"optional": {
"original_images": ("IMAGE",),
},
}
RETURN_TYPES = ("MASK", "IMAGE", "IMAGE", "INDEXES",)
RETURN_NAMES = ("non_zero_masks_out", "non_zero_mask_images_out", "zero_mask_images_out", "zero_mask_images_out_indexes",)
FUNCTION = "filter"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Filter out all the empty (i.e. all zero) mask in masks
Also filter out all the corresponding images in original_images by indexes if provide
original_images (optional): If provided, need have same length as masks.
"""
def filter(self, masks, original_images=None):
non_zero_masks = []
non_zero_mask_images = []
zero_mask_images = []
zero_mask_images_indexes = []
masks_num = len(masks)
also_process_images = False
if original_images is not None:
imgs_num = len(original_images)
if len(original_images) == masks_num:
also_process_images = True
else:
print(f"[WARNING] ignore input: original_images, due to number of original_images ({imgs_num}) is not equal to number of masks ({masks_num})")
for i in range(masks_num):
non_zero_num = np.count_nonzero(np.array(masks[i]))
if non_zero_num > 0:
non_zero_masks.append(masks[i])
if also_process_images:
non_zero_mask_images.append(original_images[i])
else:
zero_mask_images.append(original_images[i])
zero_mask_images_indexes.append(i)
non_zero_masks_out = torch.stack(non_zero_masks, dim=0)
non_zero_mask_images_out = zero_mask_images_out = zero_mask_images_out_indexes = None
if also_process_images:
non_zero_mask_images_out = torch.stack(non_zero_mask_images, dim=0)
if len(zero_mask_images) > 0:
zero_mask_images_out = torch.stack(zero_mask_images, dim=0)
zero_mask_images_out_indexes = zero_mask_images_indexes
return (non_zero_masks_out, non_zero_mask_images_out, zero_mask_images_out, zero_mask_images_out_indexes)
class InsertImageBatchByIndexes:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"images": ("IMAGE",),
"images_to_insert": ("IMAGE",),
"insert_indexes": ("INDEXES",),
},
}
RETURN_TYPES = ("IMAGE", )
RETURN_NAMES = ("images_after_insert", )
FUNCTION = "insert"
CATEGORY = "KJNodes/image"
DESCRIPTION = """
This node is designed to be use with node FilterZeroMasksAndCorrespondingImages
It inserts the images_to_insert into images according to insert_indexes
Returns:
images_after_insert: updated original images with origonal sequence order
"""
def insert(self, images, images_to_insert, insert_indexes):
images_after_insert = images
if images_to_insert is not None and insert_indexes is not None:
images_to_insert_num = len(images_to_insert)
insert_indexes_num = len(insert_indexes)
if images_to_insert_num == insert_indexes_num:
images_after_insert = []
i_images = 0
for i in range(len(images) + images_to_insert_num):
if i in insert_indexes:
images_after_insert.append(images_to_insert[insert_indexes.index(i)])
else:
images_after_insert.append(images[i_images])
i_images += 1
images_after_insert = torch.stack(images_after_insert, dim=0)
else:
print(f"[WARNING] skip this node, due to number of images_to_insert ({images_to_insert_num}) is not equal to number of insert_indexes ({insert_indexes_num})")
return (images_after_insert, )
def bbox_to_region(bbox, target_size=None):
bbox = bbox_check(bbox, target_size)
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3])
def bbox_check(bbox, target_size=None):
if not target_size:
return bbox
new_bbox = (
bbox[0],
bbox[1],
min(target_size[0] - bbox[0], bbox[2]),
min(target_size[1] - bbox[1], bbox[3]),
)
return new_bbox
class BatchUncropAdvanced:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"original_images": ("IMAGE",),
"cropped_images": ("IMAGE",),
"cropped_masks": ("MASK",),
"combined_crop_mask": ("MASK",),
"bboxes": ("BBOX",),
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01}, ),
"crop_rescale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"use_combined_mask": ("BOOLEAN", {"default": False}),
"use_square_mask": ("BOOLEAN", {"default": True}),
},
"optional": {
"combined_bounding_box": ("BBOX", {"default": None}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "uncrop"
CATEGORY = "KJNodes/masking"
def uncrop(self, original_images, cropped_images, cropped_masks, combined_crop_mask, bboxes, border_blending, crop_rescale, use_combined_mask, use_square_mask, combined_bounding_box = None):
def inset_border(image, border_width=20, border_color=(0)):
width, height = image.size
bordered_image = Image.new(image.mode, (width, height), border_color)
bordered_image.paste(image, (0, 0))
draw = ImageDraw.Draw(bordered_image)
draw.rectangle((0, 0, width - 1, height - 1), outline=border_color, width=border_width)
return bordered_image
if len(original_images) != len(cropped_images):
raise ValueError(f"The number of original_images ({len(original_images)}) and cropped_images ({len(cropped_images)}) should be the same")
# Ensure there are enough bboxes, but drop the excess if there are more bboxes than images
if len(bboxes) > len(original_images):
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_images)}, but got {len(bboxes)}")
bboxes = bboxes[:len(original_images)]
elif len(bboxes) < len(original_images):
raise ValueError("There should be at least as many bboxes as there are original and cropped images")
crop_imgs = tensor2pil(cropped_images)
input_images = tensor2pil(original_images)
out_images = []
for i in range(len(input_images)):
img = input_images[i]
crop = crop_imgs[i]
bbox = bboxes[i]
if use_combined_mask:
bb_x, bb_y, bb_width, bb_height = combined_bounding_box[0]
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
mask = combined_crop_mask[i]
else:
bb_x, bb_y, bb_width, bb_height = bbox
paste_region = bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size)
mask = cropped_masks[i]
# scale paste_region
scale_x = scale_y = crop_rescale
paste_region = (round(paste_region[0]*scale_x), round(paste_region[1]*scale_y), round(paste_region[2]*scale_x), round(paste_region[3]*scale_y))
# rescale the crop image to fit the paste_region
crop = crop.resize((round(paste_region[2]-paste_region[0]), round(paste_region[3]-paste_region[1])))
crop_img = crop.convert("RGB")
#border blending
if border_blending > 1.0:
border_blending = 1.0
elif border_blending < 0.0:
border_blending = 0.0
blend_ratio = (max(crop_img.size) / 2) * float(border_blending)
blend = img.convert("RGBA")
if use_square_mask:
mask = Image.new("L", img.size, 0)
mask_block = Image.new("L", (paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]), 255)
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0))
mask.paste(mask_block, paste_region)
else:
original_mask = tensor2pil(mask)[0]
original_mask = original_mask.resize((paste_region[2]-paste_region[0], paste_region[3]-paste_region[1]))
mask = Image.new("L", img.size, 0)
mask.paste(original_mask, paste_region)
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4))
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4))
blend.paste(crop_img, paste_region)
blend.putalpha(mask)
img = Image.alpha_composite(img.convert("RGBA"), blend)
out_images.append(img.convert("RGB"))
return (pil2tensor(out_images),)
class BatchCLIPSeg:
def __init__(self):
@ -2950,7 +2302,7 @@ class CreateMagicMask:
}
def createmagicmask(self, frames, transitions, depth, distortion, seed, frame_width, frame_height):
from .magictex import coordinate_grid, random_transform, magic
from ..utility.magictex import coordinate_grid, random_transform, magic
rng = np.random.default_rng(seed)
out = []
coords = coordinate_grid((frame_width, frame_height))
@ -3080,31 +2432,6 @@ Visualizes the specified bbox on the image.
return (torch.cat(image_list, dim=0),)
class SplitBboxes:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"bboxes": ("BBOX",),
"index": ("INT", {"default": 0,"min": 0, "max": 99999999, "step": 1}),
},
}
RETURN_TYPES = ("BBOX","BBOX",)
RETURN_NAMES = ("bboxes_a","bboxes_b",)
FUNCTION = "splitbbox"
CATEGORY = "KJNodes/masking"
DESCRIPTION = """
Splits the specified bbox list at the given index into two lists.
"""
def splitbbox(self, bboxes, index):
bboxes_a = bboxes[:index] # Sub-list from the start of bboxes up to (but not including) the index
bboxes_b = bboxes[index:] # Sub-list from the index to the end of bboxes
return (bboxes_a, bboxes_b,)
from PIL import ImageGrab
import time
class ImageGrabPIL:
@ -3775,229 +3102,6 @@ with repeats 2 becomes batch of 10 images: 0, 0, 1, 1, 2, 2, 3, 3, 4, 4
repeated_images = torch.repeat_interleave(images, repeats=repeats, dim=0)
return (repeated_images, )
class NormalizedAmplitudeToMask:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_offset": ("INT", {"default": 0,"min": -255, "max": 255, "step": 1}),
"location_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"location_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
"size": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
"shape": (
[
'none',
'circle',
'square',
'triangle',
],
{
"default": 'none'
}),
"color": (
[
'white',
'amplitude',
],
{
"default": 'amplitude'
}),
},}
CATEGORY = "KJNodes/audio"
RETURN_TYPES = ("MASK",)
FUNCTION = "convert"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Creates masks based on the normalized amplitude.
"""
def convert(self, normalized_amp, width, height, frame_offset, shape, location_x, location_y, size, color):
# Ensure normalized_amp is an array and within the range [0, 1]
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
# Offset the amplitude values by rolling the array
normalized_amp = np.roll(normalized_amp, frame_offset)
# Initialize an empty list to hold the image tensors
out = []
# Iterate over each amplitude value to create an image
for amp in normalized_amp:
# Scale the amplitude value to cover the full range of grayscale values
if color == 'amplitude':
grayscale_value = int(amp * 255)
elif color == 'white':
grayscale_value = 255
# Convert the grayscale value to an RGB format
gray_color = (grayscale_value, grayscale_value, grayscale_value)
finalsize = size * amp
if shape == 'none':
shapeimage = Image.new("RGB", (width, height), gray_color)
else:
shapeimage = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(shapeimage)
if shape == 'circle' or shape == 'square':
# Define the bounding box for the shape
left_up_point = (location_x - finalsize, location_y - finalsize)
right_down_point = (location_x + finalsize,location_y + finalsize)
two_points = [left_up_point, right_down_point]
if shape == 'circle':
draw.ellipse(two_points, fill=gray_color)
elif shape == 'square':
draw.rectangle(two_points, fill=gray_color)
elif shape == 'triangle':
# Define the points for the triangle
left_up_point = (location_x - finalsize, location_y + finalsize) # bottom left
right_down_point = (location_x + finalsize, location_y + finalsize) # bottom right
top_point = (location_x, location_y) # top point
draw.polygon([top_point, left_up_point, right_down_point], fill=gray_color)
shapeimage = pil2tensor(shapeimage)
mask = shapeimage[:, :, :, 0]
out.append(mask)
return (torch.cat(out, dim=0),)
class OffsetMaskByNormalizedAmplitude:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"mask": ("MASK",),
"x": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"y": ("INT", { "default": 0, "min": -4096, "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"rotate": ("BOOLEAN", { "default": False }),
"angle_multiplier": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }),
}
}
RETURN_TYPES = ("MASK",)
RETURN_NAMES = ("mask",)
FUNCTION = "offset"
CATEGORY = "KJNodes/audio"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Offsets masks based on the normalized amplitude.
"""
def offset(self, mask, x, y, angle_multiplier, rotate, normalized_amp):
# Ensure normalized_amp is an array and within the range [0, 1]
offsetmask = mask.clone()
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
batch_size, height, width = mask.shape
if rotate:
for i in range(batch_size):
rotation_amp = int(normalized_amp[i] * (360 * angle_multiplier))
rotation_angle = rotation_amp
offsetmask[i] = TF.rotate(offsetmask[i].unsqueeze(0), rotation_angle).squeeze(0)
if x != 0 or y != 0:
for i in range(batch_size):
offset_amp = normalized_amp[i] * 10
shift_x = min(x*offset_amp, width-1)
shift_y = min(y*offset_amp, height-1)
if shift_x != 0:
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_x), dims=1)
if shift_y != 0:
offsetmask[i] = torch.roll(offsetmask[i], shifts=int(shift_y), dims=0)
return offsetmask,
class ImageTransformByNormalizedAmplitude:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"normalized_amp": ("NORMALIZED_AMPLITUDE",),
"zoom_scale": ("FLOAT", { "default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001, "display": "number" }),
"x_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"y_offset": ("INT", { "default": 0, "min": (1 -MAX_RESOLUTION), "max": MAX_RESOLUTION, "step": 1, "display": "number" }),
"cumulative": ("BOOLEAN", { "default": False }),
"image": ("IMAGE",),
}}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "amptransform"
CATEGORY = "KJNodes/audio"
DESCRIPTION = """
Works as a bridge to the AudioScheduler -nodes:
https://github.com/a1lazydog/ComfyUI-AudioScheduler
Transforms image based on the normalized amplitude.
"""
def amptransform(self, image, normalized_amp, zoom_scale, cumulative, x_offset, y_offset):
# Ensure normalized_amp is an array and within the range [0, 1]
normalized_amp = np.clip(normalized_amp, 0.0, 1.0)
transformed_images = []
# Initialize the cumulative zoom factor
prev_amp = 0.0
for i in range(image.shape[0]):
img = image[i] # Get the i-th image in the batch
amp = normalized_amp[i] # Get the corresponding amplitude value
# Incrementally increase the cumulative zoom factor
if cumulative:
prev_amp += amp
amp += prev_amp
# Convert the image tensor from BxHxWxC to CxHxW format expected by torchvision
img = img.permute(2, 0, 1)
# Convert PyTorch tensor to PIL Image for processing
pil_img = TF.to_pil_image(img)
# Calculate the crop size based on the amplitude
width, height = pil_img.size
crop_size = int(min(width, height) * (1 - amp * zoom_scale))
crop_size = max(crop_size, 1)
# Calculate the crop box coordinates (centered crop)
left = (width - crop_size) // 2
top = (height - crop_size) // 2
right = (width + crop_size) // 2
bottom = (height + crop_size) // 2
# Crop and resize back to original size
cropped_img = TF.crop(pil_img, top, left, crop_size, crop_size)
resized_img = TF.resize(cropped_img, (height, width))
# Convert back to tensor in CxHxW format
tensor_img = TF.to_tensor(resized_img)
# Convert the tensor back to BxHxWxC format
tensor_img = tensor_img.permute(1, 2, 0)
# Offset the image based on the amplitude
offset_amp = amp * 10 # Calculate the offset magnitude based on the amplitude
shift_x = min(x_offset * offset_amp, img.shape[1] - 1) # Calculate the shift in x direction
shift_y = min(y_offset * offset_amp, img.shape[0] - 1) # Calculate the shift in y direction
# Apply the offset to the image tensor
if shift_x != 0:
tensor_img = torch.roll(tensor_img, shifts=int(shift_x), dims=1)
if shift_y != 0:
tensor_img = torch.roll(tensor_img, shifts=int(shift_y), dims=0)
# Add to the list
transformed_images.append(tensor_img)
# Stack all transformed images into a batch
transformed_batch = torch.stack(transformed_images)
return (transformed_batch,)
def parse_coordinates(coordinates_str):
coordinates = {}
pattern = r'(\d+):\((\d+),(\d+)\)'
@ -4203,8 +3307,6 @@ Normalize the images to be in the range [-1, 1]
images = images * 2.0 - 1.0
return (images,)
import comfy.sample
from nodes import CLIPTextEncode
folder_paths.add_model_folder_path("intristic_loras", os.path.join(script_directory, "intristic_loras"))
class Intrinsic_lora_sampling:

View File

@ -211,6 +211,10 @@ const create_documentation_stylesheet = () => {
this.show_doc = !this.show_doc
docElement.parentNode.removeChild(docElement)
docElement = null
if (contentWrapper) {
contentWrapper.remove()
contentWrapper = null
}
},
{ signal: this.docCtrl.signal },
);
@ -247,7 +251,7 @@ const create_documentation_stylesheet = () => {
const transform = new DOMMatrix()
.scaleSelf(scaleX, scaleY)
.multiplySelf(ctx.getTransform())
.translateSelf(this.size[0] * scaleX * window.devicePixelRatio, 0)
.translateSelf(this.size[0] * scaleX * Math.max(1.0,window.devicePixelRatio) , 0)
.translateSelf(10, -32)
const scale = new DOMMatrix()
@ -301,4 +305,20 @@ const create_documentation_stylesheet = () => {
}
return r;
}
const onRem = nodeType.prototype.onRemoved
nodeType.prototype.onRemoved = function () {
const r = onRem ? onRem.apply(this, []) : undefined
if (docElement) {
docElement.remove()
docElement = null
}
if (contentWrapper) {
contentWrapper.remove()
contentWrapper = null
}
return r
}
}