Move pillarbox_blur mode to ImagePadKJ -node

This commit is contained in:
kijai 2025-09-16 18:14:01 +03:00
parent 268063e317
commit 9b43565d38

View File

@ -2436,7 +2436,7 @@ class ImageResizeKJv2:
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"upscale_method": (s.upscale_methods,),
"keep_proportion": (["stretch", "resize", "pad", "pad_edge", "crop", "pillarbox_blur"], { "default": False }),
"keep_proportion": (["stretch", "resize", "pad", "pad_edge", "pad_edge_pixel", "crop", "pillarbox_blur"], { "default": False }),
"pad_color": ("STRING", { "default": "0, 0, 0", "tooltip": "Color to use for padding."}),
"crop_position": (["center", "top", "bottom", "left", "right"], { "default": "center" }),
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
@ -2477,154 +2477,27 @@ highest dimension.
if height == 0:
height = H
# Pillarbox blur path: build blurred background that fills the target canvas,
# overlay resized foreground centered on top.
if keep_proportion == "pillarbox_blur":
# Adjust to divisibility first, since we are producing the final canvas here
if divisible_by > 1:
width = width - (width % divisible_by)
height = height - (height % divisible_by)
image = image.to(device)
if mask is not None:
mask = mask.to(device)
# Compute foreground fit size (keep aspect, fit inside target)
ratio_fit = min(width / W, height / H) if (W > 0 and H > 0) else 1.0
fg_w = max(1, int(round(W * ratio_fit)))
fg_h = max(1, int(round(H * ratio_fit)))
# Foreground placement (center)
pad_left = (width - fg_w) // 2
pad_right = width - fg_w - pad_left
pad_top = (height - fg_h) // 2
pad_bottom = height - fg_h - pad_top
# Prepare output tensors
out_image = torch.zeros((B, height, width, C), dtype=image.dtype, device=device)
out_mask = None
# Helper: separable gaussian blur for NCHW
def _gaussian_blur_nchw(img_nchw, sigma_px):
if sigma_px <= 0:
return img_nchw
radius = max(1, int(3.0 * float(sigma_px)))
k = 2 * radius + 1
x = torch.arange(-radius, radius + 1, device=img_nchw.device, dtype=img_nchw.dtype)
k1 = torch.exp(-(x * x) / (2.0 * float(sigma_px) * float(sigma_px)))
k1 = k1 / k1.sum()
kx = k1.view(1, 1, 1, k)
ky = k1.view(1, 1, k, 1)
c = img_nchw.shape[1]
kx = kx.repeat(c, 1, 1, 1)
ky = ky.repeat(c, 1, 1, 1)
img_nchw = F.conv2d(img_nchw, kx, padding=(0, radius), groups=c)
img_nchw = F.conv2d(img_nchw, ky, padding=(radius, 0), groups=c)
return img_nchw
# Build per-batch frames
for b in range(B):
# Background: scale-to-fill (keep aspect), then center-crop to (height, width)
scale_fill = max(width / float(W), height / float(H)) if (W > 0 and H > 0) else 1.0
bg_w = max(1, int(round(W * scale_fill)))
bg_h = max(1, int(round(H * scale_fill)))
src_b = image[b].movedim(-1, 0).unsqueeze(0) # 1,C,H,W
bg = common_upscale(src_b, bg_w, bg_h, upscale_method, crop="disabled")
# Center crop to canvas
y0 = max(0, (bg_h - height) // 2)
x0 = max(0, (bg_w - width) // 2)
y1 = min(bg_h, y0 + height)
x1 = min(bg_w, x0 + width)
bg = bg[:, :, y0:y1, x0:x1]
# If rounding made it a hair off, pad to exact size
if bg.shape[2] != height or bg.shape[3] != width:
pad_h = height - bg.shape[2]
pad_w = width - bg.shape[3]
pad_top_fix = max(0, pad_h // 2)
pad_bottom_fix = max(0, pad_h - pad_top_fix)
pad_left_fix = max(0, pad_w // 2)
pad_right_fix = max(0, pad_w - pad_left_fix)
bg = F.pad(bg, (pad_left_fix, pad_right_fix, pad_top_fix, pad_bottom_fix), mode="replicate")
# Blur strength scales with output size
sigma = max(1.0, 0.006 * float(min(height, width)))
bg = _gaussian_blur_nchw(bg, sigma_px=sigma)
# 20% saturation reduction (Rec.709 luma)
if C >= 3:
r, g, bch = bg[:, 0:1], bg[:, 1:2], bg[:, 2:3]
luma = 0.2126 * r + 0.7152 * g + 0.0722 * bch
gray = torch.cat([luma, luma, luma], dim=1)
desat = 0.20
rgb = torch.cat([r, g, bch], dim=1)
rgb = rgb * (1.0 - desat) + gray * desat
bg[:, 0:3, :, :] = rgb
# Dim to keep attention on foreground
dim = 0.35
bg = torch.clamp(bg * dim, 0.0, 1.0)
# Write background to canvas
out_image[b] = bg.squeeze(0).movedim(0, -1)
# Resize foreground to fit size and composite at center
fg = common_upscale(image.movedim(-1, 1), fg_w, fg_h, upscale_method, crop="disabled").movedim(1, -1)
out_image[:, pad_top:pad_top+fg_h, pad_left:pad_left+fg_w, :] = fg
# Mask handling
if mask is not None:
# Transform mask like the foreground
if upscale_method == "lanczos":
# Use the same path as elsewhere in this node for lanczos
fg_mask = common_upscale(mask.unsqueeze(1).repeat(1, 3, 1, 1), fg_w, fg_h, upscale_method, crop="disabled").movedim(1, -1)[:, :, :, 0]
else:
fg_mask = common_upscale(mask.unsqueeze(1), fg_w, fg_h, upscale_method, crop="disabled").squeeze(1)
out_mask = torch.ones((B, height, width), dtype=image.dtype, device=device)
out_mask[:, pad_top:pad_top+fg_h, pad_left:pad_left+fg_w] = fg_mask
else:
out_mask = torch.ones((B, height, width), dtype=image.dtype, device=device)
out_mask[:, pad_top:pad_top+fg_h, pad_left:pad_left+fg_w] = 0.0
# Progress UI (kept consistent with existing code)
if unique_id and PromptServer is not None:
try:
num_elements = out_image.numel()
element_size = out_image.element_size()
memory_size_mb = (num_elements * element_size) / (1024 * 1024)
PromptServer.instance.send_progress_text(
f"<tr><td>Output: </td><td><b>{out_image.shape[0]}</b> x <b>{out_image.shape[2]}</b> x <b>{out_image.shape[1]} | {memory_size_mb:.2f}MB</b></td></tr>",
unique_id
)
except:
pass
return (
out_image.cpu(),
out_image.shape[2],
out_image.shape[1],
out_mask.cpu() if out_mask is not None else torch.zeros(64, 64, device=torch.device("cpu"), dtype=torch.float32),
)
# Existing logic for other modes
if keep_proportion == "resize" or keep_proportion.startswith("pad"):
pillarbox_blur = keep_proportion == "pillarbox_blur"
if keep_proportion == "resize" or keep_proportion.startswith("pad") or pillarbox_blur:
# If one of the dimensions is zero, calculate it to maintain the aspect ratio
if width == 0 and height != 0:
ratio = height / H
new_width = round(W * ratio)
new_height = height
elif height == 0 and width != 0:
ratio = width / W
new_width = width
new_height = round(H * ratio)
elif width != 0 and height != 0:
# Scale based on which dimension is smaller in proportion to the desired dimensions
ratio = min(width / W, height / H)
new_width = round(W * ratio)
new_height = round(H * ratio)
else:
new_width = width
new_height = height
if keep_proportion.startswith("pad"):
pad_left = pad_right = pad_top = pad_bottom = 0
if keep_proportion.startswith("pad") or pillarbox_blur:
# Calculate padding based on position
if crop_position == "center":
pad_left = (width - new_width) // 2
@ -2660,27 +2533,23 @@ highest dimension.
height = height - (height % divisible_by)
out_image = image.clone().to(device)
if mask is not None:
out_mask = mask.clone().to(device)
else:
out_mask = None
# Crop logic
if keep_proportion == "crop":
old_width = W
old_height = H
old_aspect = old_width / old_height
new_aspect = width / height
# Calculate dimensions to keep
if old_aspect > new_aspect: # Image is wider than target
if old_aspect > new_aspect:
crop_w = round(old_height * new_aspect)
crop_h = old_height
else: # Image is taller than target
else:
crop_w = old_width
crop_h = round(old_width / new_aspect)
# Calculate crop position
if crop_position == "center":
x = (old_width - crop_w) // 2
y = (old_height - crop_h) // 2
@ -2696,50 +2565,45 @@ highest dimension.
elif crop_position == "right":
x = old_width - crop_w
y = (old_height - crop_h) // 2
# Apply crop
out_image = out_image.narrow(-2, x, crop_w).narrow(-3, y, crop_h)
if mask is not None:
out_mask = out_mask.narrow(-1, x, crop_w).narrow(-2, y, crop_h)
out_image = common_upscale(out_image.movedim(-1,1), width, height, upscale_method, crop="disabled").movedim(1,-1)
out_image = common_upscale(out_image.movedim(-1,1), width, height, upscale_method, crop="disabled").movedim(1,-1)
if mask is not None:
if upscale_method == "lanczos":
out_mask = common_upscale(out_mask.unsqueeze(1).repeat(1, 3, 1, 1), width, height, upscale_method, crop="disabled").movedim(1,-1)[:, :, :, 0]
else:
out_mask = common_upscale(out_mask.unsqueeze(1), width, height, upscale_method, crop="disabled").squeeze(1)
if keep_proportion.startswith("pad"):
if pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0:
padded_width = width + pad_left + pad_right
padded_height = height + pad_top + pad_bottom
if divisible_by > 1:
width_remainder = padded_width % divisible_by
height_remainder = padded_height % divisible_by
if width_remainder > 0:
extra_width = divisible_by - width_remainder
pad_right += extra_width
if height_remainder > 0:
extra_height = divisible_by - height_remainder
pad_bottom += extra_height
out_image, _ = ImagePadKJ.pad(self, out_image, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, "edge" if keep_proportion == "pad_edge" else "color")
if mask is not None:
out_mask = out_mask.unsqueeze(1).repeat(1, 3, 1, 1).movedim(1,-1)
out_mask, _ = ImagePadKJ.pad(self, out_mask, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, "edge" if keep_proportion == "pad_edge" else "color")
out_mask = out_mask[:, :, :, 0]
else:
B, H_pad, W_pad, _ = out_image.shape
out_mask = torch.ones((B, H_pad, W_pad), dtype=out_image.dtype, device=out_image.device)
out_mask[:, pad_top:pad_top+height, pad_left:pad_left+width] = 0.0
# Pad logic
if (keep_proportion.startswith("pad") or pillarbox_blur) and (pad_left > 0 or pad_right > 0 or pad_top > 0 or pad_bottom > 0):
padded_width = width + pad_left + pad_right
padded_height = height + pad_top + pad_bottom
if divisible_by > 1:
width_remainder = padded_width % divisible_by
height_remainder = padded_height % divisible_by
if width_remainder > 0:
extra_width = divisible_by - width_remainder
pad_right += extra_width
if height_remainder > 0:
extra_height = divisible_by - height_remainder
pad_bottom += extra_height
pad_mode = (
"pillarbox_blur" if pillarbox_blur else
"edge" if keep_proportion == "pad_edge" else
"edge_pixel" if keep_proportion == "pad_edge_pixel" else
"color"
)
out_image, out_mask = ImagePadKJ.pad(self, out_image, pad_left, pad_right, pad_top, pad_bottom, 0, pad_color, pad_mode, mask=out_mask)
# Progress UI
if unique_id and PromptServer is not None:
try:
num_elements = out_image.numel()
element_size = out_image.element_size()
memory_size_mb = (num_elements * element_size) / (1024 * 1024)
PromptServer.instance.send_progress_text(
f"<tr><td>Output: </td><td><b>{out_image.shape[0]}</b> x <b>{out_image.shape[2]}</b> x <b>{out_image.shape[1]} | {memory_size_mb:.2f}MB</b></td></tr>",
unique_id
@ -2747,7 +2611,7 @@ highest dimension.
except:
pass
return(out_image.cpu(), out_image.shape[2], out_image.shape[1], out_mask.cpu() if out_mask is not None else torch.zeros(64,64, device=torch.device("cpu"), dtype=torch.float32))
return (out_image.cpu(), out_image.shape[2], out_image.shape[1], out_mask.cpu() if out_mask is not None else torch.zeros(64,64, device=torch.device("cpu"), dtype=torch.float32))
import pathlib
class LoadAndResizeImage:
@ -3681,7 +3545,7 @@ class ImagePadKJ:
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"extra_padding": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1, }),
"pad_mode": (["edge", "color"],),
"pad_mode": (["edge", "edge_pixel", "color", "pillarbox_blur"],),
"color": ("STRING", {"default": "0, 0, 0", "tooltip": "Color as RGB values in range 0-255, separated by commas."}),
},
"optional": {
@ -3699,7 +3563,6 @@ class ImagePadKJ:
def pad(self, image, left, right, top, bottom, extra_padding, color, pad_mode, mask=None, target_width=None, target_height=None):
B, H, W, C = image.shape
# Resize masks to image dimensions if necessary
if mask is not None:
BM, HM, WM = mask.shape
@ -3711,7 +3574,7 @@ class ImagePadKJ:
if len(bg_color) == 1:
bg_color = bg_color * 3 # Grayscale to RGB
bg_color = torch.tensor(bg_color, dtype=image.dtype, device=image.device)
# Calculate padding sizes with extra padding
if target_width is not None and target_height is not None:
if extra_padding > 0:
@ -3732,30 +3595,104 @@ class ImagePadKJ:
padded_width = W + pad_left + pad_right
padded_height = H + pad_top + pad_bottom
out_image = torch.zeros((B, padded_height, padded_width, C), dtype=image.dtype, device=image.device)
# Fill padded areas
for b in range(B):
if pad_mode == "edge":
# Pad with edge color
# Define edge pixels
top_edge = image[b, 0, :, :]
bottom_edge = image[b, H-1, :, :]
left_edge = image[b, :, 0, :]
right_edge = image[b, :, W-1, :]
# Fill borders with edge colors
out_image[b, :pad_top, :, :] = top_edge.mean(dim=0)
out_image[b, pad_top+H:, :, :] = bottom_edge.mean(dim=0)
out_image[b, :, :pad_left, :] = left_edge.mean(dim=0)
out_image[b, :, pad_left+W:, :] = right_edge.mean(dim=0)
out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
# Pillarbox blur mode
if pad_mode == "pillarbox_blur":
def _gaussian_blur_nchw(img_nchw, sigma_px):
if sigma_px <= 0:
return img_nchw
radius = max(1, int(3.0 * float(sigma_px)))
k = 2 * radius + 1
x = torch.arange(-radius, radius + 1, device=img_nchw.device, dtype=img_nchw.dtype)
k1 = torch.exp(-(x * x) / (2.0 * float(sigma_px) * float(sigma_px)))
k1 = k1 / k1.sum()
kx = k1.view(1, 1, 1, k)
ky = k1.view(1, 1, k, 1)
c = img_nchw.shape[1]
kx = kx.repeat(c, 1, 1, 1)
ky = ky.repeat(c, 1, 1, 1)
img_nchw = F.conv2d(img_nchw, kx, padding=(0, radius), groups=c)
img_nchw = F.conv2d(img_nchw, ky, padding=(radius, 0), groups=c)
return img_nchw
out_image = torch.zeros((B, padded_height, padded_width, C), dtype=image.dtype, device=image.device)
for b in range(B):
scale_fill = max(padded_width / float(W), padded_height / float(H)) if (W > 0 and H > 0) else 1.0
bg_w = max(1, int(round(W * scale_fill)))
bg_h = max(1, int(round(H * scale_fill)))
src_b = image[b].movedim(-1, 0).unsqueeze(0)
bg = common_upscale(src_b, bg_w, bg_h, "bilinear", crop="disabled")
y0 = max(0, (bg_h - padded_height) // 2)
x0 = max(0, (bg_w - padded_width) // 2)
y1 = min(bg_h, y0 + padded_height)
x1 = min(bg_w, x0 + padded_width)
bg = bg[:, :, y0:y1, x0:x1]
if bg.shape[2] != padded_height or bg.shape[3] != padded_width:
pad_h = padded_height - bg.shape[2]
pad_w = padded_width - bg.shape[3]
pad_top_fix = max(0, pad_h // 2)
pad_bottom_fix = max(0, pad_h - pad_top_fix)
pad_left_fix = max(0, pad_w // 2)
pad_right_fix = max(0, pad_w - pad_left_fix)
bg = F.pad(bg, (pad_left_fix, pad_right_fix, pad_top_fix, pad_bottom_fix), mode="replicate")
sigma = max(1.0, 0.006 * float(min(padded_height, padded_width)))
bg = _gaussian_blur_nchw(bg, sigma_px=sigma)
if C >= 3:
r, g, bch = bg[:, 0:1], bg[:, 1:2], bg[:, 2:3]
luma = 0.2126 * r + 0.7152 * g + 0.0722 * bch
gray = torch.cat([luma, luma, luma], dim=1)
desat = 0.20
rgb = torch.cat([r, g, bch], dim=1)
rgb = rgb * (1.0 - desat) + gray * desat
bg[:, 0:3, :, :] = rgb
dim = 0.35
bg = torch.clamp(bg * dim, 0.0, 1.0)
out_image[b] = bg.squeeze(0).movedim(0, -1)
out_image[:, pad_top:pad_top+H, pad_left:pad_left+W, :] = image
# Mask handling for pillarbox_blur
if mask is not None:
fg_mask = mask
out_masks = torch.ones((B, padded_height, padded_width), dtype=image.dtype, device=image.device)
out_masks[:, pad_top:pad_top+H, pad_left:pad_left+W] = fg_mask
else:
# Pad with specified background color
out_image[b, :, :, :] = bg_color.unsqueeze(0).unsqueeze(0) # Expand for H and W dimensions
out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
out_masks = torch.ones((B, padded_height, padded_width), dtype=image.dtype, device=image.device)
out_masks[:, pad_top:pad_top+H, pad_left:pad_left+W] = 0.0
return (out_image, out_masks)
# Standard pad logic (edge/color)
out_image = torch.zeros((B, padded_height, padded_width, C), dtype=image.dtype, device=image.device)
for b in range(B):
if pad_mode == "edge":
# Pad with edge color (mean)
top_edge = image[b, 0, :, :]
bottom_edge = image[b, H-1, :, :]
left_edge = image[b, :, 0, :]
right_edge = image[b, :, W-1, :]
out_image[b, :pad_top, :, :] = top_edge.mean(dim=0)
out_image[b, pad_top+H:, :, :] = bottom_edge.mean(dim=0)
out_image[b, :, :pad_left, :] = left_edge.mean(dim=0)
out_image[b, :, pad_left+W:, :] = right_edge.mean(dim=0)
out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
elif pad_mode == "edge_pixel":
# Pad with exact edge pixel values
for y in range(pad_top):
out_image[b, y, pad_left:pad_left+W, :] = image[b, 0, :, :]
for y in range(pad_top+H, padded_height):
out_image[b, y, pad_left:pad_left+W, :] = image[b, H-1, :, :]
for x in range(pad_left):
out_image[b, pad_top:pad_top+H, x, :] = image[b, :, 0, :]
for x in range(pad_left+W, padded_width):
out_image[b, pad_top:pad_top+H, x, :] = image[b, :, W-1, :]
out_image[b, :pad_top, :pad_left, :] = image[b, 0, 0, :]
out_image[b, :pad_top, pad_left+W:, :] = image[b, 0, W-1, :]
out_image[b, pad_top+H:, :pad_left, :] = image[b, H-1, 0, :]
out_image[b, pad_top+H:, pad_left+W:, :] = image[b, H-1, W-1, :]
out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
else:
# Pad with specified background color
out_image[b, :, :, :] = bg_color.unsqueeze(0).unsqueeze(0)
out_image[b, pad_top:pad_top+H, pad_left:pad_left+W, :] = image[b]
if mask is not None:
out_masks = torch.nn.functional.pad(
mask,