mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 21:04:41 +08:00
Update nodes.py
This commit is contained in:
parent
c4381dfe36
commit
9fa712f0a2
47
nodes.py
47
nodes.py
@ -243,10 +243,11 @@ class CreateFadeMask:
|
||||
"start_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"midpoint_level": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"end_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"midpoint_frame": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
||||
},
|
||||
}
|
||||
|
||||
def createfademask(self, frames, width, height, invert, interpolation, start_level, midpoint_level, end_level):
|
||||
def createfademask(self, frames, width, height, invert, interpolation, start_level, midpoint_level, end_level, midpoint_frame=None):
|
||||
def ease_in(t):
|
||||
return t * t
|
||||
|
||||
@ -259,32 +260,38 @@ class CreateFadeMask:
|
||||
batch_size = frames
|
||||
out = []
|
||||
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
|
||||
|
||||
|
||||
if midpoint_frame is None:
|
||||
midpoint_frame = batch_size // 2
|
||||
|
||||
for i in range(batch_size):
|
||||
t = i / (batch_size - 1)
|
||||
|
||||
if interpolation == "ease_in":
|
||||
t = ease_in(t)
|
||||
elif interpolation == "ease_out":
|
||||
t = ease_out(t)
|
||||
elif interpolation == "ease_in_out":
|
||||
t = ease_in_out(t)
|
||||
|
||||
if midpoint_level is not None:
|
||||
if t < 0.5:
|
||||
color = start_level - t * (start_level - midpoint_level) * 2
|
||||
else:
|
||||
color = midpoint_level - (t - 0.5) * (midpoint_level - end_level) * 2
|
||||
if i <= midpoint_frame:
|
||||
t = i / midpoint_frame
|
||||
if interpolation == "ease_in":
|
||||
t = ease_in(t)
|
||||
elif interpolation == "ease_out":
|
||||
t = ease_out(t)
|
||||
elif interpolation == "ease_in_out":
|
||||
t = ease_in_out(t)
|
||||
color = start_level - t * (start_level - midpoint_level)
|
||||
else:
|
||||
color = start_level - t * (start_level - end_level)
|
||||
|
||||
t = (i - midpoint_frame) / (batch_size - midpoint_frame)
|
||||
if interpolation == "ease_in":
|
||||
t = ease_in(t)
|
||||
elif interpolation == "ease_out":
|
||||
t = ease_out(t)
|
||||
elif interpolation == "ease_in_out":
|
||||
t = ease_in_out(t)
|
||||
color = midpoint_level - t * (midpoint_level - end_level)
|
||||
|
||||
color = np.clip(color, 0, 255)
|
||||
image = np.full((height, width), color, dtype=np.float32)
|
||||
image_batch[i] = image
|
||||
|
||||
|
||||
output = torch.from_numpy(image_batch)
|
||||
mask = output
|
||||
out.append(mask)
|
||||
|
||||
|
||||
if invert:
|
||||
return (1.0 - torch.cat(out, dim=0),)
|
||||
return (torch.cat(out, dim=0),)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user