mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2026-01-23 10:34:28 +08:00
Allow images with alpha to be concatenated, improve ImageGridtoBatch
This commit is contained in:
parent
c31fa9f438
commit
b5419c853c
@ -264,6 +264,21 @@ Concatenates the image2 to image1 in the specified direction.
|
||||
else:
|
||||
image2_resized = image2
|
||||
|
||||
# Ensure both images have the same number of channels
|
||||
channels_image1 = image1.shape[-1]
|
||||
channels_image2 = image2_resized.shape[-1]
|
||||
|
||||
if channels_image1 != channels_image2:
|
||||
if channels_image1 < channels_image2:
|
||||
# Add alpha channel to image1 if image2 has it
|
||||
alpha_channel = torch.ones((*image1.shape[:-1], channels_image2 - channels_image1), device=image1.device)
|
||||
image1 = torch.cat((image1, alpha_channel), dim=-1)
|
||||
else:
|
||||
# Add alpha channel to image2 if image1 has it
|
||||
alpha_channel = torch.ones((*image2_resized.shape[:-1], channels_image1 - channels_image2), device=image2_resized.device)
|
||||
image2_resized = torch.cat((image2_resized, alpha_channel), dim=-1)
|
||||
|
||||
|
||||
# Concatenate based on the specified direction
|
||||
if direction == 'right':
|
||||
concatenated_image = torch.cat((image1, image2_resized), dim=2) # Concatenate along width
|
||||
@ -1915,8 +1930,9 @@ class ImageGridtoBatch:
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"image": ("IMAGE", ),
|
||||
"columns": ("INT", {"default": 3, "min": 2, "max": 8, "tooltip": "The number of columns in the grid."}),
|
||||
}
|
||||
"columns": ("INT", {"default": 3, "min": 1, "max": 8, "tooltip": "The number of columns in the grid."}),
|
||||
"rows": ("INT", {"default": 0, "min": 1, "max": 8, "tooltip": "The number of rows in the grid. Set to 0 for automatic calculation."}),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
@ -1924,20 +1940,32 @@ class ImageGridtoBatch:
|
||||
CATEGORY = "KJNodes/image"
|
||||
DESCRIPTION = "Converts a grid of images to a batch of images."
|
||||
|
||||
def decompose(self, image, columns):
|
||||
B, H, W, C = image.shape
|
||||
orig_h = H // columns
|
||||
orig_w = W // columns
|
||||
|
||||
# Reshape and permute the image to get the grid
|
||||
image = image.view(B, columns, orig_h, columns, orig_w, C)
|
||||
image = image.permute(0, 1, 3, 2, 4, 5).contiguous()
|
||||
image = image.view(B, columns * columns, orig_h, orig_w, C)
|
||||
|
||||
# Reshape to the final batch tensor
|
||||
img_tensor = image.view(-1, orig_h, orig_w, C)
|
||||
|
||||
return img_tensor,
|
||||
def decompose(self, image, columns, rows):
|
||||
B, H, W, C = image.shape
|
||||
print("input size: ", image.shape)
|
||||
|
||||
# Calculate cell width, rounding down
|
||||
cell_width = W // columns
|
||||
|
||||
if rows == 0:
|
||||
# If rows is 0, calculate number of full rows
|
||||
rows = H // cell_height
|
||||
else:
|
||||
# If rows is specified, adjust cell_height
|
||||
cell_height = H // rows
|
||||
|
||||
# Crop the image to fit full cells
|
||||
image = image[:, :rows*cell_height, :columns*cell_width, :]
|
||||
|
||||
# Reshape and permute the image to get the grid
|
||||
image = image.view(B, rows, cell_height, columns, cell_width, C)
|
||||
image = image.permute(0, 1, 3, 2, 4, 5).contiguous()
|
||||
image = image.view(B, rows * columns, cell_height, cell_width, C)
|
||||
|
||||
# Reshape to the final batch tensor
|
||||
img_tensor = image.view(-1, cell_height, cell_width, C)
|
||||
|
||||
return (img_tensor,)
|
||||
|
||||
class SaveImageKJ:
|
||||
def __init__(self):
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user