Remove prints

This commit is contained in:
kijai 2025-11-05 14:13:11 +02:00
parent 7d1fc32d6f
commit be96f5c3a3

View File

@ -65,7 +65,6 @@ def get_sage_func(sage_attention, allow_compile=False):
else:
def sage_func(q, k, v, is_causal=False, attn_mask=None, **kwargs):
return sageattn3_blackwell(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=is_causal, attn_mask=attn_mask, per_block_mean=False).transpose(1, 2)
logging.info(f"Sage attention function: {sage_func}")
if not allow_compile:
sage_func = torch.compiler.disable()(sage_func)
@ -204,7 +203,7 @@ class CheckpointLoaderKJ(BaseLoaderKJ):
model_options = {}
if dtype := DTYPE_MAP.get(weight_dtype):
model_options["dtype"] = dtype
print(f"Setting {ckpt_name} weight dtype to {dtype}")
logging.info(f"Setting {ckpt_name} weight dtype to {dtype}")
if weight_dtype == "fp8_e4m3fn_fast":
model_options["dtype"] = torch.float8_e4m3fn
@ -224,7 +223,7 @@ class CheckpointLoaderKJ(BaseLoaderKJ):
if dtype := DTYPE_MAP.get(compute_dtype):
model.set_model_compute_dtype(dtype)
model.force_cast_weights = False
print(f"Setting {ckpt_name} compute dtype to {dtype}")
logging.info(f"Setting {ckpt_name} compute dtype to {dtype}")
if enable_fp16_accumulation:
if hasattr(torch.backends.cuda.matmul, "allow_fp16_accumulation"):
@ -373,7 +372,7 @@ class DiffusionModelLoaderKJ(BaseLoaderKJ):
model_options = {}
if dtype := DTYPE_MAP.get(weight_dtype):
model_options["dtype"] = dtype
print(f"Setting {model_name} weight dtype to {dtype}")
logging.info(f"Setting {model_name} weight dtype to {dtype}")
if weight_dtype == "fp8_e4m3fn_fast":
model_options["dtype"] = torch.float8_e4m3fn
@ -400,7 +399,7 @@ class DiffusionModelLoaderKJ(BaseLoaderKJ):
if dtype := DTYPE_MAP.get(compute_dtype):
model.set_model_compute_dtype(dtype)
model.force_cast_weights = False
print(f"Setting {model_name} compute dtype to {dtype}")
logging.info(f"Setting {model_name} compute dtype to {dtype}")
if sage_attention != "disabled":
new_attention = get_sage_func(sage_attention)
@ -430,10 +429,10 @@ class ModelPatchTorchSettings:
model_clone = model.clone()
def patch_enable_fp16_accum(model):
print("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = True")
logging.info("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = True")
torch.backends.cuda.matmul.allow_fp16_accumulation = True
def patch_disable_fp16_accum(model):
print("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = False")
logging.info("Patching torch settings: torch.backends.cuda.matmul.allow_fp16_accumulation = False")
torch.backends.cuda.matmul.allow_fp16_accumulation = False
if enable_fp16_accumulation:
@ -505,12 +504,12 @@ def patched_load_lora_for_models(model, clip, lora, strength_model, strength_cli
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
print("NOT LOADED {}".format(x))
logging.warning("NOT LOADED {}".format(x))
if patch_keys:
if hasattr(model.model, "compile_settings"):
compile_settings = getattr(model.model, "compile_settings")
print("compile_settings: ", compile_settings)
logging.info("compile_settings: ", compile_settings)
for k in patch_keys:
if "diffusion_model." in k:
# Remove the prefix to get the attribute path
@ -541,8 +540,8 @@ class PatchModelPatcherOrder:
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = "Patch the comfy patch_model function patching order, useful for torch.compile (used as object_patch) as it should come last if you want to use LoRAs with compile"
EXPERIMENTAL = True
DESCRIPTION = "NO LONGER NECESSARY, keeping node for backwards compatibility. Use the v2 compile nodes to use LoRA with torch.compile."
DEPRECATED = True
def patch(self, model, patch_order, full_load):
comfy.model_patcher.ModelPatcher.temp_object_patches_backup = {}