mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2026-01-23 09:44:28 +08:00
New nodes and bugfixing
Added GrowMaskWithBlur -node fixing set/get functionality, still buggy especially when loading workflows, added .js alert for the errors to troubleshoot
This commit is contained in:
parent
0e27281ac5
commit
ca73cb8e8e
3
.gitignore
vendored
3
.gitignore
vendored
@ -3,4 +3,5 @@ __pycache__
|
||||
.vscode
|
||||
*.ckpt
|
||||
*.safetensors
|
||||
*.pth
|
||||
*.pth
|
||||
types
|
||||
96
nodes.py
96
nodes.py
@ -1,4 +1,10 @@
|
||||
import nodes
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import scipy.ndimage
|
||||
import numpy as np
|
||||
|
||||
from nodes import MAX_RESOLUTION
|
||||
|
||||
class INTConstant:
|
||||
@classmethod
|
||||
@ -16,7 +22,93 @@ class INTConstant:
|
||||
|
||||
def get_value(self, value):
|
||||
return (value,)
|
||||
|
||||
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
|
||||
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
|
||||
d = torch.sqrt(x * x + y * y)
|
||||
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
|
||||
return g / g.sum()
|
||||
|
||||
class GrowMaskWithBlur:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"tapered_corners": ("BOOLEAN", {"default": True}),
|
||||
"flip_input": ("BOOLEAN", {"default": False}),
|
||||
"blur_radius": ("INT", {
|
||||
"default": 1,
|
||||
"min": 1,
|
||||
"max": 31,
|
||||
"step": 1
|
||||
}),
|
||||
"sigma": ("FLOAT", {
|
||||
"default": 1.0,
|
||||
"min": 0.1,
|
||||
"max": 10.0,
|
||||
"step": 0.1
|
||||
}),
|
||||
},
|
||||
}
|
||||
|
||||
CATEGORY = "KJNodes"
|
||||
|
||||
RETURN_TYPES = ("MASK", "MASK",)
|
||||
RETURN_NAMES = ("mask", "mask_inverted",)
|
||||
FUNCTION = "expand_mask"
|
||||
|
||||
def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, sigma):
|
||||
if( flip_input ):
|
||||
mask = 1.0 - mask
|
||||
c = 0 if tapered_corners else 1
|
||||
kernel = np.array([[c, 1, c],
|
||||
[1, 1, 1],
|
||||
[c, 1, c]])
|
||||
growmask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
|
||||
out = []
|
||||
for m in growmask:
|
||||
output = m.numpy()
|
||||
for _ in range(abs(expand)):
|
||||
if expand < 0:
|
||||
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
|
||||
else:
|
||||
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
|
||||
output = torch.from_numpy(output)
|
||||
out.append(output)
|
||||
|
||||
blurred = torch.stack(out, dim=0).reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
||||
batch_size, height, width, channels = blurred.shape
|
||||
if blur_radius != 0:
|
||||
blurkernel_size = blur_radius * 2 + 1
|
||||
blurkernel = gaussian_kernel(blurkernel_size, sigma, device=blurred.device).repeat(channels, 1, 1).unsqueeze(1)
|
||||
blurred = blurred.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
|
||||
padded_image = F.pad(blurred, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
|
||||
blurred = F.conv2d(padded_image, blurkernel, padding=blurkernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
|
||||
blurred = blurred.permute(0, 2, 3, 1)
|
||||
blurred = blurred[:, :, :, 0]
|
||||
|
||||
return (blurred, 1.0 - blurred,)
|
||||
|
||||
|
||||
|
||||
class PlotNode:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"start": ("FLOAT", {"default": 0.5, "min": 0.5, "max": 1.0}),
|
||||
"max_frames": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("FLOAT", "INT",)
|
||||
FUNCTION = "plot"
|
||||
CATEGORY = "KJNodes"
|
||||
|
||||
def plot(self, start, max_frames):
|
||||
result = start + max_frames
|
||||
return (result,)
|
||||
|
||||
class ConditioningMultiCombine:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@ -97,14 +189,18 @@ class ConditioningSetMaskAndCombine:
|
||||
n[1]['mask_strength'] = strength
|
||||
c2.append(n)
|
||||
return (c, c2)
|
||||
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"INTConstant": INTConstant,
|
||||
"ConditioningMultiCombine": ConditioningMultiCombine,
|
||||
"ConditioningSetMaskAndCombine": ConditioningSetMaskAndCombine,
|
||||
"GrowMaskWithBlur": GrowMaskWithBlur,
|
||||
}
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"INTConstant": "INT Constant",
|
||||
"ConditioningMultiCombine": "Conditioning Multi Combine",
|
||||
"ConditioningSetMaskAndCombine": "ConditioningSetMaskAndCombine",
|
||||
"GrowMaskWithBlur": "GrowMaskWithBlur",
|
||||
}
|
||||
@ -5,6 +5,9 @@ app.registerExtension({
|
||||
async beforeRegisterNodeDef(nodeType, nodeData, app) {
|
||||
switch (nodeData.name) {
|
||||
case "ConditioningMultiCombine":
|
||||
nodeType.prototype.onNodeMoved = function () {
|
||||
console.log(this.pos[0])
|
||||
}
|
||||
nodeType.prototype.onNodeCreated = function () {
|
||||
this.inputs_offset = nodeData.name.includes("selective")?1:0
|
||||
this.cond_type = "CONDITIONING"
|
||||
|
||||
30
web/js/plotnode.js
Normal file
30
web/js/plotnode.js
Normal file
@ -0,0 +1,30 @@
|
||||
import { app } from "../../../scripts/app.js";
|
||||
//WIP doesn't do anything
|
||||
app.registerExtension({
|
||||
name: "KJNodes.PlotNode",
|
||||
async beforeRegisterNodeDef(nodeType, nodeData, app) {
|
||||
switch (nodeData.name) {
|
||||
case "PlotNode":
|
||||
|
||||
nodeType.prototype.onNodeCreated = function () {
|
||||
|
||||
this.addWidget("button", "Update", null, () => {
|
||||
|
||||
console.log("start x:" + this.pos[0])
|
||||
console.log("start y:" +this.pos[1])
|
||||
console.log(this.graph.links);
|
||||
const toNode = this.graph._nodes.find((otherNode) => otherNode.id == this.graph.links[1].target_id);
|
||||
console.log("target x:" + toNode.pos[0])
|
||||
const a = this.pos[0]
|
||||
const b = toNode.pos[0]
|
||||
const distance = Math.abs(a - b);
|
||||
const maxDistance = 1000
|
||||
const finalDistance = (distance - 0) / (maxDistance - 0);
|
||||
|
||||
this.widgets[0].value = finalDistance;
|
||||
});
|
||||
}
|
||||
break;
|
||||
}
|
||||
},
|
||||
});
|
||||
@ -26,7 +26,9 @@ app.registerExtension({
|
||||
'',
|
||||
(s, t, u, v, x) => {
|
||||
node.validateName(node.graph);
|
||||
this.title = "Set_" + this.widgets[0].value;
|
||||
if(this.widgets[0].value !== ''){
|
||||
this.title = "Set_" + this.widgets[0].value;
|
||||
}
|
||||
this.update();
|
||||
this.properties.previousName = this.widgets[0].value;
|
||||
},
|
||||
@ -47,9 +49,11 @@ app.registerExtension({
|
||||
) {
|
||||
//On Disconnect
|
||||
if (slotType == 1 && !isChangeConnect) {
|
||||
this.inputs[slot].type = '*';
|
||||
this.inputs[slot].name = '*';
|
||||
this.title = "Set"
|
||||
if(this.inputs[slot].name === ''){
|
||||
this.inputs[slot].type = '*';
|
||||
this.inputs[slot].name = '*';
|
||||
this.title = "Set"
|
||||
}
|
||||
}
|
||||
if (slotType == 2 && !isChangeConnect) {
|
||||
this.outputs[slot].type = '*';
|
||||
@ -61,10 +65,12 @@ app.registerExtension({
|
||||
const fromNode = node.graph._nodes.find((otherNode) => otherNode.id == link_info.origin_id);
|
||||
const type = fromNode.outputs[link_info.origin_slot].type;
|
||||
|
||||
if (this.title == "Set"){
|
||||
if (this.title === "Set"){
|
||||
console.log("setting title to Set_" + type);
|
||||
this.title = "Set_" + type;
|
||||
}
|
||||
if (this.widgets[0].value == ''){
|
||||
if (this.widgets[0].value === '*'){
|
||||
console.log("setting default value to " + type);
|
||||
this.widgets[0].value = type
|
||||
}
|
||||
|
||||
@ -162,6 +168,7 @@ app.registerExtension({
|
||||
this.update = function() {
|
||||
if (node.graph) {
|
||||
this.findGetters(node.graph).forEach((getter) => {
|
||||
|
||||
getter.setType(this.inputs[0].type);
|
||||
});
|
||||
if (this.widgets[0].value) {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user