Add TorchCompileModelHyVideo node based on HunyuanVideoWrapper torch.compile settings node and TorchCompileModelFluxAdvanced

This commit is contained in:
Blyss Sarania 2025-02-12 15:30:02 -05:00
parent 80977db1ea
commit cb0f055a12
2 changed files with 64 additions and 0 deletions

View File

@ -166,6 +166,7 @@ NODE_CONFIG = {
"CheckpointLoaderKJ": {"class": CheckpointLoaderKJ, "name": "CheckpointLoaderKJ"},
"DiffusionModelLoaderKJ": {"class": DiffusionModelLoaderKJ, "name": "Diffusion Model Loader KJ"},
"TorchCompileModelFluxAdvanced": {"class": TorchCompileModelFluxAdvanced, "name": "TorchCompileModelFluxAdvanced"},
"TorchCompileModelHyVideo": {"class": TorchCompileModelHyVideo, "name": "TorchCompileModelHyVideo"},
"TorchCompileVAE": {"class": TorchCompileVAE, "name": "TorchCompileVAE"},
"TorchCompileControlNet": {"class": TorchCompileControlNet, "name": "TorchCompileControlNet"},
"PatchModelPatcherOrder": {"class": PatchModelPatcherOrder, "name": "Patch Model Patcher Order"},

View File

@ -351,6 +351,69 @@ class TorchCompileModelFluxAdvanced:
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)
class TorchCompileModelHyVideo:
def __init__(self):
self._compiled = False
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"compile_single_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile single blocks"}),
"compile_double_blocks": ("BOOLEAN", {"default": True, "tooltip": "Compile double blocks"}),
"compile_txt_in": ("BOOLEAN", {"default": False, "tooltip": "Compile txt_in layers"}),
"compile_vector_in": ("BOOLEAN", {"default": False, "tooltip": "Compile vector_in layers"}),
"compile_final_layer": ("BOOLEAN", {"default": False, "tooltip": "Compile final layer"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/experimental"
EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_single_blocks, compile_double_blocks, compile_txt_in, compile_vector_in, compile_final_layer):
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
if not self._compiled:
try:
if compile_single_blocks:
for i, block in enumerate(diffusion_model.single_blocks):
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.single_blocks.{i}", compiled_block)
if compile_double_blocks:
for i, block in enumerate(diffusion_model.double_blocks):
compiled_block = torch.compile(block, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch(f"diffusion_model.double_blocks.{i}", compiled_block)
if compile_txt_in:
compiled_block = torch.compile(diffusion_model.txt_in, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.txt_in", compiled_block)
if compile_vector_in:
compiled_block = torch.compile(diffusion_model.vector_in, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.vector_in", compiled_block)
if compile_final_layer:
compiled_block = torch.compile(diffusion_model.final_layer, fullgraph=fullgraph, dynamic=dynamic, backend=backend, mode=mode)
m.add_object_patch("diffusion_model.final_layer", compiled_block)
self._compiled = True
compile_settings = {
"backend": backend,
"mode": mode,
"fullgraph": fullgraph,
"dynamic": dynamic,
}
setattr(m.model, "compile_settings", compile_settings)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileVAE:
def __init__(self):
self._compiled_encoder = False