mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2026-01-23 19:04:33 +08:00
Add DifferentialDiffusionAdvanced
Seems useful for Flux inpainting to be able to adjust the effect
This commit is contained in:
parent
47a6da5f62
commit
d02a3bf46f
@ -134,6 +134,7 @@ NODE_CONFIG = {
|
||||
"CheckpointPerturbWeights": {"class": CheckpointPerturbWeights, "name": "CheckpointPerturbWeights"},
|
||||
"Screencap_mss": {"class": Screencap_mss, "name": "Screencap mss"},
|
||||
"WebcamCaptureCV2": {"class": WebcamCaptureCV2, "name": "Webcam Capture CV2"},
|
||||
"DifferentialDiffusionAdvanced": {"class": DifferentialDiffusionAdvanced, "name": "Differential Diffusion Advanced"},
|
||||
|
||||
#instance diffusion
|
||||
"CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking},
|
||||
|
||||
@ -1756,4 +1756,37 @@ class CheckpointPerturbWeights:
|
||||
dict[k] += torch.normal(torch.zeros_like(v) * v.mean(), torch.ones_like(v) * v.std() * multiplier).to(device)
|
||||
pbar.update(1)
|
||||
model_copy.model.diffusion_model.load_state_dict(dict)
|
||||
return model_copy,
|
||||
return model_copy,
|
||||
|
||||
class DifferentialDiffusionAdvanced():
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"model": ("MODEL", ),
|
||||
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001}),
|
||||
}}
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "apply"
|
||||
CATEGORY = "_for_testing"
|
||||
INIT = False
|
||||
|
||||
def apply(self, model, multiplier):
|
||||
self.multiplier = multiplier
|
||||
model = model.clone()
|
||||
model.set_model_denoise_mask_function(self.forward)
|
||||
return (model,)
|
||||
|
||||
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
|
||||
model = extra_options["model"]
|
||||
step_sigmas = extra_options["sigmas"]
|
||||
sigma_to = model.inner_model.model_sampling.sigma_min
|
||||
if step_sigmas[-1] > sigma_to:
|
||||
sigma_to = step_sigmas[-1]
|
||||
sigma_from = step_sigmas[0]
|
||||
|
||||
ts_from = model.inner_model.model_sampling.timestep(sigma_from)
|
||||
ts_to = model.inner_model.model_sampling.timestep(sigma_to)
|
||||
current_ts = model.inner_model.model_sampling.timestep(sigma[0])
|
||||
|
||||
threshold = (current_ts - ts_to) / (ts_from - ts_to) / self.multiplier
|
||||
|
||||
return (denoise_mask >= threshold).to(denoise_mask.dtype)
|
||||
Loading…
x
Reference in New Issue
Block a user