mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2026-01-23 18:44:31 +08:00
some cleanup
This commit is contained in:
parent
500f2cc20b
commit
d31a7ce2a1
@ -3,6 +3,7 @@ from .nodes.curve_nodes import *
|
||||
from .nodes.batchcrop_nodes import *
|
||||
from .nodes.audioscheduler_nodes import *
|
||||
from .nodes.image_nodes import *
|
||||
from .nodes.intrinsic_lora_nodes import *
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
#constants
|
||||
"INTConstant": INTConstant,
|
||||
@ -106,7 +107,6 @@ NODE_CLASS_MAPPINGS = {
|
||||
"SV3D_BatchSchedule": SV3D_BatchSchedule,
|
||||
"LoadResAdapterNormalization": LoadResAdapterNormalization,
|
||||
"Superprompt": Superprompt,
|
||||
"GLIGENTextBoxApplyBatch": GLIGENTextBoxApplyBatch,
|
||||
"GLIGENTextBoxApplyBatchCoords": GLIGENTextBoxApplyBatchCoords,
|
||||
"Intrinsic_lora_sampling": Intrinsic_lora_sampling,
|
||||
|
||||
@ -175,7 +175,6 @@ NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageTransformByNormalizedAmplitude": "ImageTransformByNormalizedAmplitude",
|
||||
"GetLatentsFromBatchIndexed": "GetLatentsFromBatchIndexed",
|
||||
"StringConstant": "StringConstant",
|
||||
"GLIGENTextBoxApplyBatch": "GLIGENTextBoxApplyBatch (deprecated)",
|
||||
"CondPassThrough": "CondPassThrough",
|
||||
"ImageUpscaleWithModelBatched": "ImageUpscaleWithModelBatched",
|
||||
"ScaleBatchPromptSchedule": "ScaleBatchPromptSchedule",
|
||||
|
||||
@ -660,12 +660,12 @@ class ImagePadForOutpaintMasked:
|
||||
|
||||
if mask is None:
|
||||
new_mask = torch.ones(
|
||||
(H + top + bottom, W + left + right),
|
||||
(B, H + top + bottom, W + left + right),
|
||||
dtype=torch.float32,
|
||||
)
|
||||
|
||||
t = torch.zeros(
|
||||
(H, W),
|
||||
(B, H, W),
|
||||
dtype=torch.float32
|
||||
)
|
||||
else:
|
||||
@ -673,8 +673,6 @@ class ImagePadForOutpaintMasked:
|
||||
mask = F.pad(mask, (left, right, top, bottom), mode='constant', value=0)
|
||||
mask = 1 - mask
|
||||
t = torch.zeros_like(mask)
|
||||
|
||||
|
||||
|
||||
if feathering > 0 and feathering * 2 < H and feathering * 2 < W:
|
||||
|
||||
@ -694,14 +692,14 @@ class ImagePadForOutpaintMasked:
|
||||
v = (feathering - d) / feathering
|
||||
|
||||
if mask is None:
|
||||
t[i, j] = v * v
|
||||
t[:, i, j] = v * v
|
||||
else:
|
||||
t[:, top + i, left + j] = v * v
|
||||
|
||||
if mask is None:
|
||||
mask = new_mask.squeeze(0)
|
||||
mask[top:top + H, left:left + W] = t
|
||||
mask = mask.unsqueeze(0)
|
||||
mask[:, top:top + H, left:left + W] = t
|
||||
#mask = mask.unsqueeze(0)
|
||||
|
||||
return (new_image, mask,)
|
||||
|
||||
|
||||
115
nodes/intrinsic_lora_nodes.py
Normal file
115
nodes/intrinsic_lora_nodes.py
Normal file
@ -0,0 +1,115 @@
|
||||
import folder_paths
|
||||
import os
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from comfy.utils import ProgressBar
|
||||
import comfy.sample
|
||||
from nodes import CLIPTextEncode
|
||||
|
||||
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
folder_paths.add_model_folder_path("intristic_loras", os.path.join(script_directory, "intristic_loras"))
|
||||
|
||||
class Intrinsic_lora_sampling:
|
||||
def __init__(self):
|
||||
self.loaded_lora = None
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"lora_name": (folder_paths.get_filename_list("intristic_loras"), ),
|
||||
"task": (
|
||||
[
|
||||
'depth map',
|
||||
'surface normals',
|
||||
'albedo',
|
||||
'shading',
|
||||
],
|
||||
{
|
||||
"default": 'depth map'
|
||||
}),
|
||||
"text": ("STRING", {"multiline": True, "default": ""}),
|
||||
"clip": ("CLIP", ),
|
||||
"vae": ("VAE", ),
|
||||
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
|
||||
},
|
||||
"optional": {
|
||||
"image": ("IMAGE",),
|
||||
"optional_latent": ("LATENT",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE", "LATENT",)
|
||||
FUNCTION = "onestepsample"
|
||||
CATEGORY = "KJNodes"
|
||||
DESCRIPTION = """
|
||||
Sampler to use the intrinsic loras:
|
||||
https://github.com/duxiaodan/intrinsic-lora
|
||||
These LoRAs are tiny and thus included
|
||||
with this node pack.
|
||||
"""
|
||||
|
||||
def onestepsample(self, model, lora_name, clip, vae, text, task, per_batch, image=None, optional_latent=None):
|
||||
pbar = ProgressBar(3)
|
||||
|
||||
if optional_latent is None:
|
||||
image_list = []
|
||||
for start_idx in range(0, image.shape[0], per_batch):
|
||||
sub_pixels = vae.vae_encode_crop_pixels(image[start_idx:start_idx+per_batch])
|
||||
image_list.append(vae.encode(sub_pixels[:,:,:,:3]))
|
||||
sample = torch.cat(image_list, dim=0)
|
||||
else:
|
||||
sample = optional_latent["samples"]
|
||||
noise = torch.zeros(sample.size(), dtype=sample.dtype, layout=sample.layout, device="cpu")
|
||||
prompt = task + "," + text
|
||||
positive, = CLIPTextEncode.encode(self, clip, prompt)
|
||||
negative = positive #negative shouldn't do anything in this scenario
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
#custom model sampling to pass latent through as it is
|
||||
class X0_PassThrough(comfy.model_sampling.EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
return model_output
|
||||
def calculate_input(self, sigma, noise):
|
||||
return noise
|
||||
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
|
||||
sampling_type = X0_PassThrough
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
|
||||
#load lora
|
||||
model_clone = model.clone()
|
||||
lora_path = folder_paths.get_full_path("intristic_loras", lora_name)
|
||||
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
|
||||
self.loaded_lora = (lora_path, lora)
|
||||
|
||||
model_clone_with_lora = comfy.sd.load_lora_for_models(model_clone, None, lora, 1.0, 0)[0]
|
||||
|
||||
model_clone_with_lora.add_object_patch("model_sampling", model_sampling)
|
||||
|
||||
samples = {"samples": comfy.sample.sample(model_clone_with_lora, noise, 1, 1.0, "euler", "simple", positive, negative, sample,
|
||||
denoise=1.0, disable_noise=True, start_step=0, last_step=1,
|
||||
force_full_denoise=True, noise_mask=None, callback=None, disable_pbar=True, seed=None)}
|
||||
pbar.update(1)
|
||||
|
||||
decoded = []
|
||||
for start_idx in range(0, samples["samples"].shape[0], per_batch):
|
||||
decoded.append(vae.decode(samples["samples"][start_idx:start_idx+per_batch]))
|
||||
image_out = torch.cat(decoded, dim=0)
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
if task == 'depth map':
|
||||
imax = image_out.max()
|
||||
imin = image_out.min()
|
||||
image_out = (image_out-imin)/(imax-imin)
|
||||
image_out = torch.max(image_out, dim=3, keepdim=True)[0].repeat(1, 1, 1, 3)
|
||||
elif task == 'surface normals':
|
||||
image_out = F.normalize(image_out * 2 - 1, dim=3) / 2 + 0.5
|
||||
image_out = 1.0 - image_out
|
||||
else:
|
||||
image_out = image_out.clamp(-1.,1.)
|
||||
|
||||
return (image_out, samples,)
|
||||
284
nodes/nodes.py
284
nodes/nodes.py
@ -14,9 +14,8 @@ import os
|
||||
import io
|
||||
|
||||
import model_management
|
||||
from nodes import MAX_RESOLUTION, CLIPTextEncode
|
||||
from nodes import MAX_RESOLUTION
|
||||
|
||||
import comfy.sample
|
||||
import folder_paths
|
||||
from ..utility.utility import tensor2pil, pil2tensor
|
||||
|
||||
@ -178,12 +177,7 @@ class CreateFluidMask:
|
||||
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
|
||||
|
||||
class CreateAudioMask:
|
||||
def __init__(self):
|
||||
try:
|
||||
import librosa
|
||||
self.librosa = librosa
|
||||
except ImportError:
|
||||
print("Can not import librosa. Install it with 'pip install librosa'")
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "createaudiomask"
|
||||
CATEGORY = "KJNodes/deprecated"
|
||||
@ -202,14 +196,17 @@ class CreateAudioMask:
|
||||
}
|
||||
|
||||
def createaudiomask(self, frames, width, height, invert, audio_path, scale):
|
||||
# Define the number of images in the batch
|
||||
try:
|
||||
import librosa
|
||||
except ImportError:
|
||||
raise Exception("Can not import librosa. Install it with 'pip install librosa'")
|
||||
batch_size = frames
|
||||
out = []
|
||||
masks = []
|
||||
if audio_path == "audio.wav": #I don't know why relative path won't work otherwise...
|
||||
audio_path = os.path.join(script_directory, audio_path)
|
||||
audio, sr = self.librosa.load(audio_path)
|
||||
spectrogram = np.abs(self.librosa.stft(audio))
|
||||
audio, sr = librosa.load(audio_path)
|
||||
spectrogram = np.abs(librosa.stft(audio))
|
||||
|
||||
for i in range(batch_size):
|
||||
image = Image.new("RGB", (width, height), "black")
|
||||
@ -2432,265 +2429,6 @@ https://huggingface.co/stabilityai/sv3d
|
||||
|
||||
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
||||
return (final_positive, final_negative, {"samples": latent})
|
||||
|
||||
|
||||
|
||||
def parse_coordinates(coordinates_str):
|
||||
coordinates = {}
|
||||
pattern = r'(\d+):\((\d+),(\d+)\)'
|
||||
matches = re.findall(pattern, coordinates_str)
|
||||
for match in matches:
|
||||
index, x, y = map(int, match)
|
||||
coordinates[index] = (x, y)
|
||||
return coordinates
|
||||
|
||||
def interpolate_coordinates(coordinates_dict, batch_size):
|
||||
sorted_coords = sorted(coordinates_dict.items())
|
||||
interpolated = {}
|
||||
|
||||
for i, ((index1, (x1, y1)), (index2, (x2, y2))) in enumerate(zip(sorted_coords, sorted_coords[1:])):
|
||||
distance = index2 - index1
|
||||
x_step = (x2 - x1) / distance
|
||||
y_step = (y2 - y1) / distance
|
||||
|
||||
for j in range(distance):
|
||||
interpolated_x = round(x1 + j * x_step)
|
||||
interpolated_y = round(y1 + j * y_step)
|
||||
interpolated[index1 + j] = (interpolated_x, interpolated_y)
|
||||
interpolated[sorted_coords[-1][0]] = sorted_coords[-1][1]
|
||||
|
||||
# Ensure we have coordinates for all indices in the batch
|
||||
last_index, last_coords = sorted_coords[-1]
|
||||
for i in range(last_index + 1, batch_size):
|
||||
interpolated[i] = last_coords
|
||||
|
||||
return interpolated
|
||||
|
||||
def interpolate_coordinates_with_curves(coordinates_dict, batch_size):
|
||||
from scipy.interpolate import CubicSpline
|
||||
sorted_coords = sorted(coordinates_dict.items())
|
||||
x_coords, y_coords = zip(*[coord for index, coord in sorted_coords])
|
||||
|
||||
# Create the spline curve functions
|
||||
indices = np.array([index for index, coord in sorted_coords])
|
||||
cs_x = CubicSpline(indices, x_coords)
|
||||
cs_y = CubicSpline(indices, y_coords)
|
||||
|
||||
# Generate interpolated coordinates using the spline functions
|
||||
interpolated_indices = np.arange(0, batch_size)
|
||||
interpolated_x = cs_x(interpolated_indices)
|
||||
interpolated_y = cs_y(interpolated_indices)
|
||||
|
||||
# Round the interpolated coordinates and create the dictionary
|
||||
interpolated = {i: (round(x), round(y)) for i, (x, y) in enumerate(zip(interpolated_x, interpolated_y))}
|
||||
return interpolated
|
||||
|
||||
def plot_to_tensor(coordinates_dict, interpolated_dict, height, width, box_size):
|
||||
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
||||
import matplotlib.patches as patches
|
||||
|
||||
original_x, original_y = zip(*coordinates_dict.values())
|
||||
interpolated_x, interpolated_y = zip(*interpolated_dict.values())
|
||||
|
||||
fig, ax = plt.subplots(figsize=(width/100, height/100), dpi=100)
|
||||
ax.scatter(original_x, original_y, color='blue', label='Original Points')
|
||||
ax.scatter(interpolated_x, interpolated_y, color='red', alpha=0.5, label='Interpolated Points')
|
||||
ax.plot(interpolated_x, interpolated_y, color='grey', linestyle='--', linewidth=0.5)
|
||||
# Draw a box at each interpolated coordinate
|
||||
for x, y in interpolated_dict.values():
|
||||
rect = patches.Rectangle((x - box_size/2, y - box_size/2), box_size, box_size,
|
||||
linewidth=1, edgecolor='green', facecolor='none')
|
||||
ax.add_patch(rect)
|
||||
ax.set_title('Interpolated Coordinates')
|
||||
ax.set_xlabel('X Coordinate')
|
||||
ax.set_ylabel('Y Coordinate')
|
||||
ax.legend()
|
||||
ax.set_xlim(0, width) # Set the x-axis to match the input latent width
|
||||
ax.set_ylim(height, 0) # Set the y-axis to match the input latent height, with (0,0) at top-left
|
||||
|
||||
canvas = FigureCanvas(fig)
|
||||
canvas.draw()
|
||||
|
||||
width, height = fig.get_size_inches() * fig.get_dpi()
|
||||
image_np = np.frombuffer(canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
|
||||
|
||||
image_tensor = torch.from_numpy(image_np).float() / 255.0
|
||||
image_tensor = image_tensor.unsqueeze(0)
|
||||
|
||||
plt.close(fig)
|
||||
|
||||
return image_tensor
|
||||
|
||||
class GLIGENTextBoxApplyBatch:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"conditioning_to": ("CONDITIONING", ),
|
||||
"latents": ("LATENT", ),
|
||||
"clip": ("CLIP", ),
|
||||
"gligen_textbox_model": ("GLIGEN", ),
|
||||
"text": ("STRING", {"multiline": True}),
|
||||
"width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"coordinates": ("STRING", {"multiline": True}),
|
||||
"interpolation": (
|
||||
[
|
||||
'straight',
|
||||
'CubicSpline',
|
||||
],
|
||||
{
|
||||
"default": 'CubicSpline'
|
||||
}),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING", "IMAGE",)
|
||||
FUNCTION = "append"
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
DESCRIPTION = """
|
||||
Experimental, deprecated, check the GLIGENTextBoxApplyBatchCoords instead.
|
||||
"""
|
||||
|
||||
def append(self, latents, conditioning_to, clip, gligen_textbox_model, text, width, height, coordinates, interpolation):
|
||||
|
||||
coordinates_dict = parse_coordinates(coordinates)
|
||||
batch_size = sum(tensor.size(0) for tensor in latents.values())
|
||||
c = []
|
||||
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
|
||||
|
||||
# Interpolate coordinates for the entire batch
|
||||
if interpolation == 'CubicSpline':
|
||||
interpolated_coords = interpolate_coordinates_with_curves(coordinates_dict, batch_size)
|
||||
if interpolation == 'straight':
|
||||
interpolated_coords = interpolate_coordinates(coordinates_dict, batch_size)
|
||||
|
||||
plot_image_tensor = plot_to_tensor(coordinates_dict, interpolated_coords, 512, 512, height)
|
||||
for t in conditioning_to:
|
||||
n = [t[0], t[1].copy()]
|
||||
|
||||
position_params_batch = [[] for _ in range(batch_size)] # Initialize a list of empty lists for each batch item
|
||||
|
||||
for i in range(batch_size):
|
||||
x_position, y_position = interpolated_coords[i]
|
||||
position_param = (cond_pooled, height // 8, width // 8, y_position // 8, x_position // 8)
|
||||
position_params_batch[i].append(position_param) # Append position_param to the correct sublist
|
||||
print("x ",x_position, "y ", y_position)
|
||||
prev = []
|
||||
if "gligen" in n[1]:
|
||||
prev = n[1]['gligen'][2]
|
||||
else:
|
||||
prev = [[] for _ in range(batch_size)]
|
||||
# Concatenate prev and position_params_batch, ensuring both are lists of lists
|
||||
# and each sublist corresponds to a batch item
|
||||
combined_position_params = [prev_item + batch_item for prev_item, batch_item in zip(prev, position_params_batch)]
|
||||
n[1]['gligen'] = ("position_batched", gligen_textbox_model, combined_position_params)
|
||||
c.append(n)
|
||||
|
||||
return (c, plot_image_tensor,)
|
||||
|
||||
folder_paths.add_model_folder_path("intristic_loras", os.path.join(script_directory, "intristic_loras"))
|
||||
|
||||
class Intrinsic_lora_sampling:
|
||||
def __init__(self):
|
||||
self.loaded_lora = None
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "model": ("MODEL",),
|
||||
"lora_name": (folder_paths.get_filename_list("intristic_loras"), ),
|
||||
"task": (
|
||||
[
|
||||
'depth map',
|
||||
'surface normals',
|
||||
'albedo',
|
||||
'shading',
|
||||
],
|
||||
{
|
||||
"default": 'depth map'
|
||||
}),
|
||||
"text": ("STRING", {"multiline": True, "default": ""}),
|
||||
"clip": ("CLIP", ),
|
||||
"vae": ("VAE", ),
|
||||
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
|
||||
},
|
||||
"optional": {
|
||||
"image": ("IMAGE",),
|
||||
"optional_latent": ("LATENT",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE", "LATENT",)
|
||||
FUNCTION = "onestepsample"
|
||||
CATEGORY = "KJNodes"
|
||||
DESCRIPTION = """
|
||||
Sampler to use the intrinsic loras:
|
||||
https://github.com/duxiaodan/intrinsic-lora
|
||||
These LoRAs are tiny and thus included
|
||||
with this node pack.
|
||||
"""
|
||||
|
||||
def onestepsample(self, model, lora_name, clip, vae, text, task, per_batch, image=None, optional_latent=None):
|
||||
pbar = comfy.utils.ProgressBar(3)
|
||||
|
||||
if optional_latent is None:
|
||||
image_list = []
|
||||
for start_idx in range(0, image.shape[0], per_batch):
|
||||
sub_pixels = vae.vae_encode_crop_pixels(image[start_idx:start_idx+per_batch])
|
||||
image_list.append(vae.encode(sub_pixels[:,:,:,:3]))
|
||||
sample = torch.cat(image_list, dim=0)
|
||||
else:
|
||||
sample = optional_latent["samples"]
|
||||
noise = torch.zeros(sample.size(), dtype=sample.dtype, layout=sample.layout, device="cpu")
|
||||
prompt = task + "," + text
|
||||
positive, = CLIPTextEncode.encode(self, clip, prompt)
|
||||
negative = positive #negative shouldn't do anything in this scenario
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
#custom model sampling to pass latent through as it is
|
||||
class X0_PassThrough(comfy.model_sampling.EPS):
|
||||
def calculate_denoised(self, sigma, model_output, model_input):
|
||||
return model_output
|
||||
def calculate_input(self, sigma, noise):
|
||||
return noise
|
||||
sampling_base = comfy.model_sampling.ModelSamplingDiscrete
|
||||
sampling_type = X0_PassThrough
|
||||
|
||||
class ModelSamplingAdvanced(sampling_base, sampling_type):
|
||||
pass
|
||||
model_sampling = ModelSamplingAdvanced(model.model.model_config)
|
||||
|
||||
#load lora
|
||||
model_clone = model.clone()
|
||||
lora_path = folder_paths.get_full_path("intristic_loras", lora_name)
|
||||
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
|
||||
self.loaded_lora = (lora_path, lora)
|
||||
|
||||
model_clone_with_lora = comfy.sd.load_lora_for_models(model_clone, None, lora, 1.0, 0)[0]
|
||||
|
||||
model_clone_with_lora.add_object_patch("model_sampling", model_sampling)
|
||||
|
||||
samples = {"samples": comfy.sample.sample(model_clone_with_lora, noise, 1, 1.0, "euler", "simple", positive, negative, sample,
|
||||
denoise=1.0, disable_noise=True, start_step=0, last_step=1,
|
||||
force_full_denoise=True, noise_mask=None, callback=None, disable_pbar=True, seed=None)}
|
||||
pbar.update(1)
|
||||
|
||||
decoded = []
|
||||
for start_idx in range(0, samples["samples"].shape[0], per_batch):
|
||||
decoded.append(vae.decode(samples["samples"][start_idx:start_idx+per_batch]))
|
||||
image_out = torch.cat(decoded, dim=0)
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
if task == 'depth map':
|
||||
imax = image_out.max()
|
||||
imin = image_out.min()
|
||||
image_out = (image_out-imin)/(imax-imin)
|
||||
image_out = torch.max(image_out, dim=3, keepdim=True)[0].repeat(1, 1, 1, 3)
|
||||
elif task == 'surface normals':
|
||||
image_out = F.normalize(image_out * 2 - 1, dim=3) / 2 + 0.5
|
||||
image_out = 1.0 - image_out
|
||||
else:
|
||||
image_out = image_out.clamp(-1.,1.)
|
||||
|
||||
return (image_out, samples,)
|
||||
|
||||
class RemapMaskRange:
|
||||
@classmethod
|
||||
@ -2842,7 +2580,6 @@ or a .txt file with RealEstate camera intrinsics and coordinates, in a 3D plot.
|
||||
def plot(self, pose_file_path, scale, base_xval, zval, use_exact_fx, relative_c2w, use_viewer, cameractrl_poses=None):
|
||||
import matplotlib as mpl
|
||||
import matplotlib.pyplot as plt
|
||||
import io
|
||||
from torchvision.transforms import ToTensor
|
||||
|
||||
x_min = -2.0 * scale
|
||||
@ -3052,7 +2789,6 @@ If no image is provided, mode is set to text-to-image
|
||||
args.disable_metadata = False
|
||||
|
||||
import requests
|
||||
from io import BytesIO
|
||||
from torchvision import transforms
|
||||
|
||||
data = {
|
||||
@ -3068,7 +2804,7 @@ If no image is provided, mode is set to text-to-image
|
||||
to_pil = transforms.ToPILImage()
|
||||
pil_image = to_pil(image)
|
||||
# Save the PIL Image to a BytesIO object
|
||||
buffer = BytesIO()
|
||||
buffer = io.BytesIO()
|
||||
pil_image.save(buffer, format='PNG')
|
||||
buffer.seek(0)
|
||||
files = {"image": ("image.png", buffer, "image/png")}
|
||||
@ -3105,7 +2841,7 @@ If no image is provided, mode is set to text-to-image
|
||||
|
||||
if response.status_code == 200:
|
||||
# Convert the response content to a PIL Image
|
||||
image = Image.open(BytesIO(response.content))
|
||||
image = Image.open(io.BytesIO(response.content))
|
||||
# Convert the PIL Image to a PyTorch tensor
|
||||
transform = transforms.ToTensor()
|
||||
tensor_image = transform(image)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user