mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 21:04:41 +08:00
Update image_nodes.py
This commit is contained in:
parent
579f0b4050
commit
f123b36d28
@ -1322,19 +1322,22 @@ class TransitionImagesMulti:
|
|||||||
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
|
||||||
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal bar", "vertical bar", "horizontal door", "vertical door", "fade"],),
|
"transition_type": (["horizontal slide", "vertical slide", "box", "circle", "horizontal bar", "vertical bar", "horizontal door", "vertical door", "fade"],),
|
||||||
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
||||||
|
"blur_radius": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 100.0, "step": 0.1}),
|
||||||
"device": (["CPU", "GPU"], {"default": "CPU"}),
|
"device": (["CPU", "GPU"], {"default": "CPU"}),
|
||||||
},
|
},
|
||||||
}
|
}
|
||||||
|
|
||||||
#transitions from matteo's essential nodes
|
#transitions from matteo's essential nodes
|
||||||
def transition(self, inputcount, transitioning_frames, transition_type, interpolation, device, **kwargs):
|
def transition(self, inputcount, transitioning_frames, transition_type, interpolation, device, blur_radius, **kwargs):
|
||||||
|
|
||||||
device = model_management.get_torch_device()
|
gpu = model_management.get_torch_device()
|
||||||
|
|
||||||
def wipe(images_1, images_2, alpha, transition_type):
|
def wipe(images_1, images_2, alpha, transition_type, blur_radius):
|
||||||
width = images_1.shape[1]
|
width = images_1.shape[1]
|
||||||
height = images_1.shape[0]
|
height = images_1.shape[0]
|
||||||
mask = torch.zeros_like(images_1)
|
|
||||||
|
mask = torch.zeros_like(images_1, device=images_1.device)
|
||||||
|
|
||||||
alpha = alpha.item()
|
alpha = alpha.item()
|
||||||
|
|
||||||
if "horizontal slide" in transition_type:
|
if "horizontal slide" in transition_type:
|
||||||
@ -1383,6 +1386,8 @@ class TransitionImagesMulti:
|
|||||||
elif "fade" in transition_type:
|
elif "fade" in transition_type:
|
||||||
mask[:, :, :] = alpha
|
mask[:, :, :] = alpha
|
||||||
|
|
||||||
|
mask = gaussian_blur(mask, blur_radius)
|
||||||
|
|
||||||
return images_1 * (1 - mask) + images_2 * mask
|
return images_1 * (1 - mask) + images_2 * mask
|
||||||
|
|
||||||
def ease_in(t):
|
def ease_in(t):
|
||||||
@ -1402,6 +1407,24 @@ class TransitionImagesMulti:
|
|||||||
return t + 0.1 * math.sin(40 * t)
|
return t + 0.1 * math.sin(40 * t)
|
||||||
def exponential_ease_out(t):
|
def exponential_ease_out(t):
|
||||||
return 1 - (1 - t) ** 4
|
return 1 - (1 - t) ** 4
|
||||||
|
|
||||||
|
def gaussian_blur(mask, blur_radius):
|
||||||
|
print(mask.device)
|
||||||
|
if blur_radius > 0:
|
||||||
|
kernel_size = int(blur_radius * 2) + 1
|
||||||
|
if kernel_size % 2 == 0:
|
||||||
|
kernel_size += 1 # Ensure kernel size is odd
|
||||||
|
sigma = blur_radius / 3
|
||||||
|
x = torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=torch.float32)
|
||||||
|
x = torch.exp(-0.5 * (x / sigma) ** 2)
|
||||||
|
kernel1d = x / x.sum()
|
||||||
|
kernel2d = kernel1d[:, None] * kernel1d[None, :]
|
||||||
|
kernel2d = kernel2d.to(mask.device)
|
||||||
|
kernel2d = kernel2d.expand(mask.shape[2], 1, kernel2d.shape[0], kernel2d.shape[1])
|
||||||
|
mask = mask.permute(2, 0, 1).unsqueeze(0) # Change to [C, H, W] and add batch dimension
|
||||||
|
mask = F.conv2d(mask, kernel2d, padding=kernel_size // 2, groups=mask.shape[1])
|
||||||
|
mask = mask.squeeze(0).permute(1, 2, 0) # Change back to [H, W, C]
|
||||||
|
return mask
|
||||||
|
|
||||||
easing_functions = {
|
easing_functions = {
|
||||||
"linear": lambda t: t,
|
"linear": lambda t: t,
|
||||||
@ -1433,17 +1456,17 @@ class TransitionImagesMulti:
|
|||||||
last_frame_image_1 = image_1[-1]
|
last_frame_image_1 = image_1[-1]
|
||||||
first_frame_image_2 = new_image[0]
|
first_frame_image_2 = new_image[0]
|
||||||
if device == "GPU":
|
if device == "GPU":
|
||||||
last_frame_image_1 = last_frame_image_1.to(device)
|
last_frame_image_1 = last_frame_image_1.to(gpu)
|
||||||
first_frame_image_2 = first_frame_image_2.to(device)
|
first_frame_image_2 = first_frame_image_2.to(gpu)
|
||||||
|
|
||||||
for frame in range(transitioning_frames):
|
for frame in range(transitioning_frames):
|
||||||
t = frame / (transitioning_frames - 1)
|
t = frame / (transitioning_frames - 1)
|
||||||
alpha = easing_function(t)
|
alpha = easing_function(t)
|
||||||
alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device)
|
alpha_tensor = torch.tensor(alpha, dtype=last_frame_image_1.dtype, device=last_frame_image_1.device)
|
||||||
frame_image = wipe(last_frame_image_1, first_frame_image_2, alpha_tensor, transition_type)
|
frame_image = wipe(last_frame_image_1, first_frame_image_2, alpha_tensor, transition_type, blur_radius)
|
||||||
frames.append(frame_image)
|
frames.append(frame_image)
|
||||||
|
|
||||||
frames = torch.stack(frames)
|
frames = torch.stack(frames).cpu()
|
||||||
image_1 = torch.cat((image_1, frames, new_image), dim=0)
|
image_1 = torch.cat((image_1, frames, new_image), dim=0)
|
||||||
|
|
||||||
return image_1.cpu(),
|
return image_1.cpu(),
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user