Bbox smoothing stuff

This commit is contained in:
kijai 2023-11-09 11:57:20 +02:00
parent 9504b46674
commit fcf4b9c235

View File

@ -1282,6 +1282,7 @@ class BatchCropFromMask:
"original_images": ("IMAGE",),
"masks": ("MASK",),
"crop_size_mult": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"bbox_smooth_alpha": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
@ -1302,12 +1303,48 @@ class BatchCropFromMask:
FUNCTION = "crop"
CATEGORY = "KJNodes/masking"
def crop(self, masks, original_images, crop_size_mult):
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha):
"""
Smooth the bounding box size using exponential smoothing.
Args:
prev_bbox_size (int): The bounding box size of the previous frame.
curr_bbox_size (int): The bounding box size of the current frame.
alpha (float): The smoothing factor, between 0 and 1.
A larger alpha places more weight on the current frame's size.
Returns:
int: The smoothed bounding box size.
"""
return int(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size)
def smooth_center(self, prev_center, curr_center, alpha=0.5):
"""
Smooth the center coordinates using exponential smoothing.
Args:
prev_center (tuple): The center coordinates of the previous frame.
curr_center (tuple): The center coordinates of the current frame.
alpha (float): The smoothing factor, between 0 and 1.
A larger alpha places more weight on the current frame's center.
Returns:
tuple: The smoothed center coordinates.
"""
return (int(alpha * curr_center[0] + (1 - alpha) * prev_center[0]),
int(alpha * curr_center[1] + (1 - alpha) * prev_center[1]))
def crop(self, masks, original_images, crop_size_mult, bbox_smooth_alpha):
bounding_boxes = []
cropped_images = []
# Initialize max_bbox_size for the first frame
if not hasattr(self, 'max_bbox_size'):
self.max_bbox_size = 0
# First, calculate the maximum bounding box size across all masks
max_bbox_size = 0
curr_max_bbox_size = 0
for mask in masks:
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
@ -1316,31 +1353,49 @@ class BatchCropFromMask:
width = max_x - min_x
height = max_y - min_y
bbox_size = max(width, height)
max_bbox_size = max(max_bbox_size, bbox_size)
curr_max_bbox_size = max(curr_max_bbox_size, bbox_size)
# Make sure max_bbox_size is divisible by 32, if not, round it upwards so it is
max_bbox_size = math.ceil(max_bbox_size / 32) * 32
# Smooth the changes in the bounding box size
self.max_bbox_size = self.smooth_bbox_size(self.max_bbox_size, curr_max_bbox_size, bbox_smooth_alpha)
# Apply the crop size multiplier
max_bbox_size = int(max_bbox_size * crop_size_mult)
self.max_bbox_size = int(self.max_bbox_size * crop_size_mult)
# Make sure max_bbox_size is divisible by 32, if not, round it upwards so it is
self.max_bbox_size = math.ceil(self.max_bbox_size / 32) * 32
# Then, for each mask and corresponding image...
for mask, img in zip(masks, original_images):
for i, (mask, img) in enumerate(zip(masks, original_images)):
_mask = tensor2pil(mask)[0]
non_zero_indices = np.nonzero(np.array(_mask))
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1])
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0])
# Calculate center of bounding box
center_x = (max_x + min_x) // 2
center_y = (max_y + min_y) // 2
center_x = np.mean(non_zero_indices[1])
center_y = np.mean(non_zero_indices[0])
curr_center = (int(center_x), int(center_y))
# If this is the first frame, initialize prev_center with curr_center
if not hasattr(self, 'prev_center'):
self.prev_center = curr_center
# Smooth the changes in the center coordinates from the second frame onwards
if i > 0:
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha)
else:
center = curr_center
# Update prev_center for the next frame
self.prev_center = center
# Create bounding box using max_bbox_size
half_box_size = max_bbox_size // 2
min_x = max(0, center_x - half_box_size)
max_x = min(img.shape[1], center_x + half_box_size)
min_y = max(0, center_y - half_box_size)
max_y = min(img.shape[0], center_y + half_box_size)
half_box_size = self.max_bbox_size // 2
half_box_size = self.max_bbox_size // 2
min_x = max(0, center[0] - half_box_size)
max_x = min(img.shape[1], center[0] + half_box_size)
min_y = max(0, center[1] - half_box_size)
max_y = min(img.shape[0], center[1] + half_box_size)
# Append bounding box coordinates
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y))
@ -1351,7 +1406,7 @@ class BatchCropFromMask:
cropped_out = torch.stack(cropped_images, dim=0)
return (original_images, cropped_out, bounding_boxes, max_bbox_size, max_bbox_size, )
return (original_images, cropped_out, bounding_boxes, self.max_bbox_size, self.max_bbox_size, )
def bbox_to_region(bbox, target_size=None):