mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2026-01-23 18:44:31 +08:00
TorchCompileVAE and controlnet
This commit is contained in:
parent
530c5d7eaf
commit
fe5fbb03ff
@ -153,6 +153,8 @@ NODE_CONFIG = {
|
||||
"CustomControlNetWeightsFluxFromList": {"class": CustomControlNetWeightsFluxFromList, "name": "Custom ControlNet Weights Flux From List"},
|
||||
"CheckpointLoaderKJ": {"class": CheckpointLoaderKJ, "name": "CheckpointLoaderKJ"},
|
||||
"TorchCompileModelFluxAdvanced": {"class": TorchCompileModelFluxAdvanced, "name": "TorchCompileModelFluxAdvanced"},
|
||||
"TorchCompileVAE": {"class": TorchCompileVAE, "name": "TorchCompileVAE"},
|
||||
"TorchCompileControlNet": {"class": TorchCompileControlNet, "name": "TorchCompileControlNet"},
|
||||
|
||||
#instance diffusion
|
||||
"CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking},
|
||||
|
||||
@ -2256,7 +2256,7 @@ class TorchCompileModelFluxAdvanced:
|
||||
RETURN_TYPES = ("MODEL",)
|
||||
FUNCTION = "patch"
|
||||
|
||||
CATEGORY = "_for_testing"
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def parse_blocks(self, blocks_str):
|
||||
@ -2299,4 +2299,73 @@ class TorchCompileModelFluxAdvanced:
|
||||
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
|
||||
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)
|
||||
|
||||
class TorchCompileVAE:
|
||||
def __init__(self):
|
||||
self._compiled_encoder = False
|
||||
self._compiled_decoder = False
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"vae": ("VAE",),
|
||||
"backend": (["inductor", "cudagraphs"],),
|
||||
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
|
||||
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
|
||||
"compile_encoder": ("BOOLEAN", {"default": True, "tooltip": "Compile encoder"}),
|
||||
"compile_decoder": ("BOOLEAN", {"default": True, "tooltip": "Compile decoder"}),
|
||||
}}
|
||||
RETURN_TYPES = ("VAE",)
|
||||
FUNCTION = "compile"
|
||||
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def compile(self, vae, backend, mode, fullgraph, compile_encoder, compile_decoder):
|
||||
if compile_encoder:
|
||||
if not self._compiled_encoder:
|
||||
try:
|
||||
vae.first_stage_model.encoder = torch.compile(vae.first_stage_model.encoder, mode=mode, fullgraph=fullgraph, backend=backend)
|
||||
self._compiled_encoder = True
|
||||
except:
|
||||
raise RuntimeError("Failed to compile model")
|
||||
if compile_decoder:
|
||||
if not self._compiled_decoder:
|
||||
try:
|
||||
vae.first_stage_model.decoder = torch.compile(vae.first_stage_model.decoder, mode=mode, fullgraph=fullgraph, backend=backend)
|
||||
self._compiled_decoder = True
|
||||
except:
|
||||
raise RuntimeError("Failed to compile model")
|
||||
return (vae, )
|
||||
|
||||
class TorchCompileControlNet:
|
||||
def __init__(self):
|
||||
self._compiled= False
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"controlnet": ("CONTROL_NET",),
|
||||
"backend": (["inductor", "cudagraphs"],),
|
||||
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
|
||||
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
|
||||
}}
|
||||
RETURN_TYPES = ("CONTROL_NET",)
|
||||
FUNCTION = "compile"
|
||||
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
EXPERIMENTAL = True
|
||||
|
||||
def compile(self, controlnet, backend, mode, fullgraph):
|
||||
print(controlnet.control_model)
|
||||
if not self._compiled:
|
||||
try:
|
||||
# for i, block in enumerate(controlnet.control_model.double_blocks):
|
||||
# print("Compiling controlnet double_block", i)
|
||||
# controlnet.control_model.double_blocks[i] = torch.compile(block, mode=mode, fullgraph=fullgraph, backend=backend)
|
||||
controlnet.control_model = torch.compile(controlnet.control_model, mode=mode, fullgraph=fullgraph, backend=backend)
|
||||
self._compiled = True
|
||||
except:
|
||||
self._compiled = False
|
||||
raise RuntimeError("Failed to compile model")
|
||||
|
||||
return (controlnet, )
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user