mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 12:54:40 +08:00
Compare commits
6 Commits
300721ea68
...
777983b37c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
777983b37c | ||
|
|
712851c53e | ||
|
|
496d3bd07e | ||
|
|
50e7dd34d3 | ||
|
|
37206374ef | ||
|
|
6717a58837 |
@ -212,6 +212,9 @@ NODE_CONFIG = {
|
||||
"LatentInpaintTTM": {"class": LatentInpaintTTM, "name": "Latent Inpaint TTM"},
|
||||
"NABLA_AttentionKJ": {"class": NABLA_AttentionKJ, "name": "NABLA Attention KJ"},
|
||||
"TorchCompileModelAdvanced": {"class": TorchCompileModelAdvanced, "name": "TorchCompileModelAdvanced"},
|
||||
"StartRecordCUDAMemoryHistory": {"class": StartRecordCUDAMemoryHistory, "name": "Start Recording CUDAMemory History"},
|
||||
"EndRecordCUDAMemoryHistory": {"class": EndRecordCUDAMemoryHistory, "name": "End Recording CUDAMemory History"},
|
||||
"VisualizeCUDAMemoryHistory": {"class": VisualizeCUDAMemoryHistory, "name": "Visualize CUDAMemory History"},
|
||||
|
||||
#instance diffusion
|
||||
"CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking},
|
||||
|
||||
@ -785,8 +785,8 @@ class GetImageSizeAndCount:
|
||||
"image": ("IMAGE",),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("IMAGE","INT", "INT", "INT",)
|
||||
RETURN_NAMES = ("image", "width", "height", "count",)
|
||||
RETURN_TYPES = ("IMAGE","INT", "INT", "INT", "INT",)
|
||||
RETURN_NAMES = ("image", "width", "height", "count", "channels",)
|
||||
FUNCTION = "getsize"
|
||||
CATEGORY = "KJNodes/image"
|
||||
DESCRIPTION = """
|
||||
@ -799,9 +799,10 @@ and passes it through unchanged.
|
||||
width = image.shape[2]
|
||||
height = image.shape[1]
|
||||
count = image.shape[0]
|
||||
channels = image.shape[3]
|
||||
return {"ui": {
|
||||
"text": [f"{count}x{width}x{height}"]},
|
||||
"result": (image, width, height, count)
|
||||
"text": [f"{count}x{width}x{height}x{channels}"]},
|
||||
"result": (image, width, height, count, channels)
|
||||
}
|
||||
|
||||
class GetLatentSizeAndCount:
|
||||
@ -2963,6 +2964,8 @@ class LoadImagesFromFolderKJ:
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(cls, folder, **kwargs):
|
||||
if not os.path.isabs(folder) and args.base_directory:
|
||||
folder = os.path.join(args.base_directory, folder)
|
||||
if not os.path.isdir(folder):
|
||||
return float("NaN")
|
||||
|
||||
@ -3032,6 +3035,8 @@ class LoadImagesFromFolderKJ:
|
||||
DESCRIPTION = """Loads images from a folder into a batch, images are resized and loaded into a batch."""
|
||||
|
||||
def load_images(self, folder, width, height, image_load_cap, start_index, keep_aspect_ratio, include_subfolders=False):
|
||||
if not os.path.isabs(folder) and args.base_directory:
|
||||
folder = os.path.join(args.base_directory, folder)
|
||||
if not os.path.isdir(folder):
|
||||
raise FileNotFoundError(f"Folder '{folder} cannot be found.'")
|
||||
|
||||
@ -3335,6 +3340,8 @@ class SaveStringKJ:
|
||||
filename_prefix += self.prefix_append
|
||||
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
||||
if not os.path.isabs(output_folder) and args.base_directory:
|
||||
output_folder = os.path.join(args.base_directory, output_folder)
|
||||
if output_folder != "output":
|
||||
if not os.path.exists(output_folder):
|
||||
os.makedirs(output_folder, exist_ok=True)
|
||||
@ -3960,6 +3967,9 @@ class LoadVideosFromFolder:
|
||||
FUNCTION = "load_video"
|
||||
|
||||
def load_video(self, output_type, grid_max_columns, add_label=False, **kwargs):
|
||||
if not os.path.isabs(kwargs['video']) and args.base_directory:
|
||||
kwargs['video'] = os.path.join(args.base_directory, kwargs['video'])
|
||||
|
||||
if self.vhs_nodes is None:
|
||||
raise ImportError("This node requires ComfyUI-VideoHelperSuite to be installed.")
|
||||
videos_list = []
|
||||
|
||||
@ -4,6 +4,7 @@ import logging
|
||||
import torch
|
||||
import importlib
|
||||
import math
|
||||
import datetime
|
||||
|
||||
import folder_paths
|
||||
import comfy.model_management as mm
|
||||
@ -2103,7 +2104,7 @@ class NABLA_AttentionKJ():
|
||||
|
||||
def attention_override_nabla(func, *args, **kwargs):
|
||||
return nabla_attention(*args, **kwargs)
|
||||
|
||||
|
||||
if torch_compile:
|
||||
attention_override_nabla = torch.compile(attention_override_nabla, mode="max-autotune-no-cudagraphs", dynamic=True)
|
||||
|
||||
@ -2146,7 +2147,7 @@ class NABLA_Attention():
|
||||
kv_nb = mask.sum(-1).to(torch.int32)
|
||||
kv_inds = mask.argsort(dim=-1, descending=True).to(torch.int32)
|
||||
return BlockMask.from_kv_blocks(torch.zeros_like(kv_nb), kv_inds, kv_nb, kv_inds, BLOCK_SIZE=BLOCK_SIZE, mask_mod=None)
|
||||
|
||||
|
||||
def fast_sta_nabla(T, H, W, wT=3, wH=3, wW=3):
|
||||
l = torch.Tensor([T, H, W]).amax()
|
||||
r = torch.arange(0, l, 1, dtype=torch.int16, device=mm.get_torch_device())
|
||||
@ -2166,7 +2167,7 @@ def fast_sta_nabla(T, H, W, wT=3, wH=3, wW=3):
|
||||
|
||||
def get_sparse_params(x, wT, wH, wW, sparsity=0.9):
|
||||
B, C, T, H, W = x.shape
|
||||
print("x shape:", x.shape)
|
||||
#print("x shape:", x.shape)
|
||||
patch_size = (1, 2, 2)
|
||||
T, H, W = (
|
||||
T // patch_size[0],
|
||||
@ -2186,4 +2187,119 @@ def get_sparse_params(x, wT, wH, wW, sparsity=0.9):
|
||||
"method": "topcdf",
|
||||
}
|
||||
|
||||
return sparse_params
|
||||
return sparse_params
|
||||
|
||||
from comfy.comfy_types.node_typing import IO
|
||||
class StartRecordCUDAMemoryHistory():
|
||||
# @classmethod
|
||||
# def IS_CHANGED(s):
|
||||
# return True
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"input": (IO.ANY,),
|
||||
"enabled": (["all", "state", "None"], {"default": "all", "tooltip": "None: disable, 'state': keep info for allocated memory, 'all': keep history of all alloc/free calls"}),
|
||||
"context": (["all", "state", "alloc", "None"], {"default": "all", "tooltip": "None: no tracebacks, 'state': tracebacks for allocated memory, 'alloc': for alloc calls, 'all': for free calls"}),
|
||||
"stacks": (["python", "all"], {"default": "all", "tooltip": "'python': Python/TorchScript/inductor frames, 'all': also C++ frames"}),
|
||||
"max_entries": ("INT", {"default": 100000, "min": 1000, "max": 10000000, "tooltip": "Maximum number of entries to record"}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.ANY, )
|
||||
RETURN_NAMES = ("input", "output_path",)
|
||||
FUNCTION = "start"
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
DESCRIPTION = "THIS NODE ALWAYS RUNS. Starts recording CUDA memory allocation history, can be ended and saved with EndRecordCUDAMemoryHistory. "
|
||||
|
||||
def start(self, input, enabled, context, stacks, max_entries):
|
||||
mm.soft_empty_cache()
|
||||
torch.cuda.reset_peak_memory_stats(mm.get_torch_device())
|
||||
torch.cuda.memory._record_memory_history(
|
||||
max_entries=max_entries,
|
||||
enabled=enabled if enabled != "None" else None,
|
||||
context=context if context != "None" else None,
|
||||
stacks=stacks
|
||||
)
|
||||
return input,
|
||||
|
||||
class EndRecordCUDAMemoryHistory():
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"input": (IO.ANY,),
|
||||
"output_path": ("STRING", {"default": "comfy_cuda_memory_history"}, "Base path for saving the CUDA memory history file, timestamp and .pt extension will be added"),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = (IO.ANY, "STRING",)
|
||||
RETURN_NAMES = ("input", "output_path",)
|
||||
FUNCTION = "end"
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
DESCRIPTION = "Records CUDA memory allocation history between start and end, saves to a file that can be analyzed here: https://docs.pytorch.org/memory_viz or with VisualizeCUDAMemoryHistory node"
|
||||
|
||||
def end(self, input, output_path):
|
||||
mm.soft_empty_cache()
|
||||
time = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
||||
output_path = f"{output_path}{time}.pt"
|
||||
torch.cuda.memory._dump_snapshot(output_path)
|
||||
torch.cuda.memory._record_memory_history(enabled=None)
|
||||
return input, output_path
|
||||
|
||||
|
||||
try:
|
||||
from server import PromptServer
|
||||
except:
|
||||
PromptServer = None
|
||||
|
||||
class VisualizeCUDAMemoryHistory():
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"snapshot_path": ("STRING", ),
|
||||
},
|
||||
"hidden": {
|
||||
"unique_id": "UNIQUE_ID",
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("STRING",)
|
||||
RETURN_NAMES = ("output_path",)
|
||||
FUNCTION = "visualize"
|
||||
CATEGORY = "KJNodes/experimental"
|
||||
DESCRIPTION = "Visualizes a CUDA memory allocation history file, opens in browser"
|
||||
OUTPUT_NODE = True
|
||||
|
||||
def visualize(self, snapshot_path, unique_id):
|
||||
import pickle
|
||||
from torch.cuda import _memory_viz
|
||||
import uuid
|
||||
|
||||
from folder_paths import get_output_directory
|
||||
output_dir = get_output_directory()
|
||||
|
||||
with open(snapshot_path, "rb") as f:
|
||||
snapshot = pickle.load(f)
|
||||
|
||||
html = _memory_viz.trace_plot(snapshot)
|
||||
html_filename = f"cuda_memory_history_{uuid.uuid4().hex}.html"
|
||||
output_path = os.path.join(output_dir, "memory_history", html_filename)
|
||||
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
||||
|
||||
with open(output_path, "w", encoding="utf-8") as f:
|
||||
f.write(html)
|
||||
|
||||
api_url = f"http://localhost:8188/api/view?type=output&filename={html_filename}&subfolder=memory_history"
|
||||
|
||||
# Progress UI
|
||||
if unique_id and PromptServer is not None:
|
||||
try:
|
||||
PromptServer.instance.send_progress_text(
|
||||
api_url,
|
||||
unique_id
|
||||
)
|
||||
except:
|
||||
pass
|
||||
|
||||
return api_url,
|
||||
|
||||
@ -175,6 +175,7 @@ app.registerExtension({
|
||||
this.outputs[1]["label"] = "width"
|
||||
this.outputs[2]["label"] = "height"
|
||||
this.outputs[3]["label"] = "count"
|
||||
this.outputs[4]["label"] = "channels"
|
||||
return v;
|
||||
}
|
||||
//const onGetImageSizeExecuted = nodeType.prototype.onExecuted;
|
||||
@ -187,6 +188,7 @@ app.registerExtension({
|
||||
this.outputs[1]["label"] = values[1] + " width"
|
||||
this.outputs[2]["label"] = values[2] + " height"
|
||||
this.outputs[3]["label"] = values[0] + " count"
|
||||
this.outputs[4]["label"] = values[3] + " channels"
|
||||
return r
|
||||
}
|
||||
break;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user