Compare commits

..

4 Commits

Author SHA1 Message Date
VM8gkAs
c0368e2402
Merge c116d3396fda5b6b94293e240add0c54a8a3ba69 into 390d05fe7eb0bc0197811dc4078393471e1cc09e 2025-11-27 15:25:56 +01:00
kijai
390d05fe7e Add generic TorchCompileModelAdvanced node to handle advanced compile options for all diffusion models
Avoids needing different nodes for different models
2025-11-27 13:59:31 +02:00
kijai
f0ed965cd9 Allow fp32 input for sageattn function 2025-11-27 13:33:41 +02:00
kijai
acdd16a973 Add NABLA_AttentionKJ
Only tested with Kadinsky5
2025-11-26 23:40:12 +02:00
2 changed files with 188 additions and 4 deletions

View File

@ -210,6 +210,8 @@ NODE_CONFIG = {
"WanVideoNAG": {"class": WanVideoNAG, "name": "WanVideoNAG"},
"GGUFLoaderKJ": {"class": GGUFLoaderKJ, "name": "GGUF Loader KJ"},
"LatentInpaintTTM": {"class": LatentInpaintTTM, "name": "Latent Inpaint TTM"},
"NABLA_AttentionKJ": {"class": NABLA_AttentionKJ, "name": "NABLA Attention KJ"},
"TorchCompileModelAdvanced": {"class": TorchCompileModelAdvanced, "name": "TorchCompileModelAdvanced"},
#instance diffusion
"CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking},

View File

@ -3,15 +3,17 @@ from comfy.ldm.modules import attention as comfy_attention
import logging
import torch
import importlib
import math
import folder_paths
import comfy.model_management as mm
from comfy.cli_args import args
from comfy.ldm.modules.attention import wrap_attn
from comfy.ldm.modules.attention import wrap_attn, optimized_attention
import comfy.model_patcher
import comfy.utils
import comfy.sd
try:
from comfy_api.latest import io
v3_available = True
@ -71,6 +73,9 @@ def get_sage_func(sage_attention, allow_compile=False):
@wrap_attn
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
in_dtype = v.dtype
if q.dtype == torch.float32 or k.dtype == torch.float32 or v.dtype == torch.float32:
q, k, v = q.to(torch.float16), k.to(torch.float16), v.to(torch.float16)
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout="HND"
@ -89,7 +94,7 @@ def get_sage_func(sage_attention, allow_compile=False):
# add a heads dimension if there isn't already one
if mask.ndim == 3:
mask = mask.unsqueeze(1)
out = sage_func(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
out = sage_func(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout).to(in_dtype)
if tensor_layout == "HND":
if not skip_output_reshape:
out = (
@ -675,6 +680,7 @@ class TorchCompileModelFluxAdvancedV2:
try:
if double_blocks:
for i, block in enumerate(diffusion_model.double_blocks):
print("Adding double block to compile list", i)
compile_key_list.append(f"diffusion_model.double_blocks.{i}")
if single_blocks:
for i, block in enumerate(diffusion_model.single_blocks):
@ -718,7 +724,7 @@ class TorchCompileModelHyVideo:
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
DEPRECATED = True
CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True
@ -850,7 +856,60 @@ class TorchCompileModelWanVideoV2:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileModelAdvanced:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("MODEL",),
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"compile_transformer_blocks_only": ("BOOLEAN", {"default": True, "tooltip": "Compile only transformer blocks, faster compile and less error prone"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
"debug_compile_keys": ("BOOLEAN", {"default": False, "tooltip": "Print the compile keys used for torch.compile"}),
},
}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "KJNodes/torchcompile"
DESCRIPTION = "Advanced torch.compile patching for diffusion models."
EXPERIMENTAL = True
def patch(self, model, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit, compile_transformer_blocks_only, debug_compile_keys):
from comfy_api.torch_helpers import set_torch_compile_wrapper
m = model.clone()
diffusion_model = m.get_model_object("diffusion_model")
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
try:
if compile_transformer_blocks_only:
layer_types = ["double_blocks", "single_blocks", "layers", "transformer_blocks", "blocks"]
compile_key_list = []
for layer_name in layer_types:
if hasattr(diffusion_model, layer_name):
blocks = getattr(diffusion_model, layer_name)
for i in range(len(blocks)):
compile_key_list.append(f"diffusion_model.{layer_name}.{i}")
if not compile_key_list:
logging.warning("No known transformer blocks found to compile, compiling entire diffusion model instead")
elif debug_compile_keys:
logging.info("TorchCompileModelAdvanced: Compile key list:")
for key in compile_key_list:
logging.info(f" - {key}")
if not compile_key_list:
compile_key_list =["diffusion_model"]
set_torch_compile_wrapper(model=m, keys=compile_key_list, backend=backend, mode=mode, dynamic=dynamic, fullgraph=fullgraph)
except:
raise RuntimeError("Failed to compile model")
return (m, )
class TorchCompileModelQwenImage:
@classmethod
def INPUT_TYPES(s):
@ -2005,3 +2064,126 @@ else:
FUNCTION = ""
CATEGORY = ""
DESCRIPTION = "This node requires newer ComfyUI"
try:
from torch.nn.attention.flex_attention import flex_attention, BlockMask
except:
flex_attention = None
BlockMask = None
class NABLA_AttentionKJ():
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"latent": ("LATENT", {"tooltip": "Only used to get the latent shape"}),
"window_time": ("INT", {"default": 11, "min": 1, "tooltip": "Temporal attention window size"}),
"window_width": ("INT", {"default": 3, "min": 1, "tooltip": "Spatial attention window size"}),
"window_height": ("INT", {"default": 3, "min": 1, "tooltip": "Spatial attention window size"}),
"sparsity": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0, "step": 0.01}),
"torch_compile": ("BOOLEAN", {"default": True, "tooltip": "Most likely required for reasonable memory usage"})
},
}
RETURN_TYPES = ("MODEL", )
FUNCTION = "patch"
DESCRIPTION = "Experimental node for patching attention mode to use NABLA sparse attention for video models, currently only works with Kadinsky5"
CATEGORY = "KJNodes/experimental"
def patch(self, model, latent, window_time, window_width, window_height, sparsity, torch_compile):
if flex_attention is None or BlockMask is None:
raise RuntimeError("can't import flex_attention from torch.nn.attention, requires newer pytorch version")
model_clone = model.clone()
samples = latent["samples"]
sparse_params = get_sparse_params(samples, window_time, window_height, window_width, sparsity)
nabla_attention = NABLA_Attention(sparse_params)
def attention_override_nabla(func, *args, **kwargs):
return nabla_attention(*args, **kwargs)
if torch_compile:
attention_override_nabla = torch.compile(attention_override_nabla, mode="max-autotune-no-cudagraphs", dynamic=True)
# attention override
model_clone.model_options["transformer_options"]["optimized_attention_override"] = attention_override_nabla
return model_clone,
class NABLA_Attention():
def __init__(self, sparse_params):
self.sparse_params = sparse_params
def __call__(self, q, k, v, heads, **kwargs):
if q.shape[-2] < 3000 or k.shape[-2] < 3000:
return optimized_attention(q, k, v, heads, **kwargs)
block_mask = self.nablaT_v2(q, k, self.sparse_params["sta_mask"], thr=self.sparse_params["P"])
out = flex_attention(q, k, v, block_mask=block_mask).transpose(1, 2).contiguous().flatten(-2, -1)
return out
def nablaT_v2(self, q, k, sta, thr=0.9):
# Map estimation
BLOCK_SIZE = 64
B, h, S, D = q.shape
s1 = S // BLOCK_SIZE
qa = q.reshape(B, h, s1, BLOCK_SIZE, D).mean(-2)
ka = k.reshape(B, h, s1, BLOCK_SIZE, D).mean(-2).transpose(-2, -1)
map = qa @ ka
map = torch.softmax(map / math.sqrt(D), dim=-1)
# Map binarization
vals, inds = map.sort(-1)
cvals = vals.cumsum_(-1)
mask = (cvals >= 1 - thr).int()
mask = mask.gather(-1, inds.argsort(-1))
mask = torch.logical_or(mask, sta)
# BlockMask creation
kv_nb = mask.sum(-1).to(torch.int32)
kv_inds = mask.argsort(dim=-1, descending=True).to(torch.int32)
return BlockMask.from_kv_blocks(torch.zeros_like(kv_nb), kv_inds, kv_nb, kv_inds, BLOCK_SIZE=BLOCK_SIZE, mask_mod=None)
def fast_sta_nabla(T, H, W, wT=3, wH=3, wW=3):
l = torch.Tensor([T, H, W]).amax()
r = torch.arange(0, l, 1, dtype=torch.int16, device=mm.get_torch_device())
mat = (r.unsqueeze(1) - r.unsqueeze(0)).abs()
sta_t, sta_h, sta_w = (
mat[:T, :T].flatten(),
mat[:H, :H].flatten(),
mat[:W, :W].flatten(),
)
sta_t = sta_t <= wT // 2
sta_h = sta_h <= wH // 2
sta_w = sta_w <= wW // 2
sta_hw = (sta_h.unsqueeze(1) * sta_w.unsqueeze(0)).reshape(H, H, W, W).transpose(1, 2).flatten()
sta = (sta_t.unsqueeze(1) * sta_hw.unsqueeze(0)).reshape(T, T, H * W, H * W).transpose(1, 2)
return sta.reshape(T * H * W, T * H * W)
def get_sparse_params(x, wT, wH, wW, sparsity=0.9):
B, C, T, H, W = x.shape
print("x shape:", x.shape)
patch_size = (1, 2, 2)
T, H, W = (
T // patch_size[0],
H // patch_size[1],
W // patch_size[2],
)
sta_mask = fast_sta_nabla(T, H // 8, W // 8, wT, wH, wW)
sparse_params = {
"sta_mask": sta_mask.unsqueeze_(0).unsqueeze_(0),
"to_fractal": True,
"P": sparsity,
"wT": wT,
"wH": wH,
"wW": wW,
"add_sta": True,
"visual_shape": (T, H, W),
"method": "topcdf",
}
return sparse_params