Compare commits

...

5 Commits

Author SHA1 Message Date
Dango233
1150f54dad
Merge 8643d75a6b98dfd1f39eb97ea53e1c927314200a into acdd16a973460b5be5d92133a9217787f0e085c6 2025-11-27 10:20:55 +08:00
kijai
acdd16a973 Add NABLA_AttentionKJ
Only tested with Kadinsky5
2025-11-26 23:40:12 +02:00
Dango233
8643d75a6b Extend fp8 diff path when either model is scaled 2025-10-28 22:40:05 -04:00
Dango233
e6ee59b4c2 Log when scaled fp8 diff path is used 2025-10-28 22:30:26 -04:00
Dango233
cedea47902 Fix LoRA extraction for scaled fp8 models 2025-10-28 22:28:43 -04:00
3 changed files with 213 additions and 16 deletions

View File

@ -210,6 +210,7 @@ NODE_CONFIG = {
"WanVideoNAG": {"class": WanVideoNAG, "name": "WanVideoNAG"}, "WanVideoNAG": {"class": WanVideoNAG, "name": "WanVideoNAG"},
"GGUFLoaderKJ": {"class": GGUFLoaderKJ, "name": "GGUF Loader KJ"}, "GGUFLoaderKJ": {"class": GGUFLoaderKJ, "name": "GGUF Loader KJ"},
"LatentInpaintTTM": {"class": LatentInpaintTTM, "name": "Latent Inpaint TTM"}, "LatentInpaintTTM": {"class": LatentInpaintTTM, "name": "Latent Inpaint TTM"},
"NABLA_AttentionKJ": {"class": NABLA_AttentionKJ, "name": "NABLA Attention KJ"},
#instance diffusion #instance diffusion
"CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking}, "CreateInstanceDiffusionTracking": {"class": CreateInstanceDiffusionTracking},

View File

@ -1,6 +1,7 @@
import torch import torch
import comfy.model_management import comfy.model_management
import comfy.utils import comfy.utils
import comfy.lora
import folder_paths import folder_paths
import os import os
import logging import logging
@ -11,6 +12,50 @@ device = comfy.model_management.get_torch_device()
CLAMP_QUANTILE = 0.99 CLAMP_QUANTILE = 0.99
def _resolve_weight_from_patches(patches, key):
base_weight, convert_func = patches[0]
weight_tensor = comfy.model_management.cast_to_device(
base_weight, torch.device("cpu"), torch.float32, copy=True
)
try:
weight_tensor = convert_func(weight_tensor, inplace=True)
except TypeError:
weight_tensor = convert_func(weight_tensor)
if len(patches) > 1:
weight_tensor = comfy.lora.calculate_weight(
patches[1:],
weight_tensor,
key,
intermediate_dtype=torch.float32,
original_weights={key: patches},
)
return weight_tensor
def _build_scaled_fp8_diff(finetuned_model, original_model, prefix, bias_diff):
finetuned_patches = finetuned_model.get_key_patches(prefix)
original_patches = original_model.get_key_patches(prefix)
common_keys = set(finetuned_patches.keys()).intersection(original_patches.keys())
diff_sd = {}
for key in common_keys:
is_weight = key.endswith(".weight")
is_bias = key.endswith(".bias")
if not is_weight and not (bias_diff and is_bias):
continue
ft_tensor = _resolve_weight_from_patches(finetuned_patches[key], key)
orig_tensor = _resolve_weight_from_patches(original_patches[key], key)
diff_sd[key] = ft_tensor.sub(orig_tensor)
return diff_sd
def extract_lora(diff, key, rank, algorithm, lora_type, lowrank_iters=7, adaptive_param=1.0, clamp_quantile=True): def extract_lora(diff, key, rank, algorithm, lora_type, lowrank_iters=7, adaptive_param=1.0, clamp_quantile=True):
""" """
Extracts LoRA weights from a weight difference tensor using SVD. Extracts LoRA weights from a weight difference tensor using SVD.
@ -99,15 +144,18 @@ def extract_lora(diff, key, rank, algorithm, lora_type, lowrank_iters=7, adaptiv
return (U, Vh) return (U, Vh)
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, algorithm, lowrank_iters, out_dtype, bias_diff=False, adaptive_param=1.0, clamp_quantile=True): def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, algorithm, lowrank_iters, out_dtype, bias_diff=False, adaptive_param=1.0, clamp_quantile=True, sd_override=None):
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True) if sd_override is None:
model_diff.model.diffusion_model.cpu() comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
sd = model_diff.model_state_dict(filter_prefix=prefix_model) model_diff.model.diffusion_model.cpu()
del model_diff sd = model_diff.model_state_dict(filter_prefix=prefix_model)
comfy.model_management.soft_empty_cache() del model_diff
for k, v in sd.items(): comfy.model_management.soft_empty_cache()
if isinstance(v, torch.Tensor): for k, v in sd.items():
sd[k] = v.cpu() if isinstance(v, torch.Tensor):
sd[k] = v.cpu()
else:
sd = sd_override
# Get total number of keys to process for progress bar # Get total number of keys to process for progress bar
total_keys = len([k for k in sd if k.endswith(".weight") or (bias_diff and k.endswith(".bias"))]) total_keys = len([k for k in sd if k.endswith(".weight") or (bias_diff and k.endswith(".bias"))])
@ -183,17 +231,39 @@ class LoraExtractKJ:
raise ValueError("svd_lowrank algorithm is only supported for standard LoRA extraction.") raise ValueError("svd_lowrank algorithm is only supported for standard LoRA extraction.")
dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[output_dtype] dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[output_dtype]
m = finetuned_model.clone()
kp = original_model.get_key_patches("diffusion_model.") model_diff = None
for k in kp: sd_override = None
m.add_patches({k: kp[k]}, - 1.0, 1.0)
model_diff = m scaled_fp8_ft = getattr(getattr(finetuned_model.model, "model_config", None), "scaled_fp8", None)
scaled_fp8_orig = getattr(getattr(original_model.model, "model_config", None), "scaled_fp8", None)
scaled_fp8_present = scaled_fp8_ft is not None or scaled_fp8_orig is not None
if scaled_fp8_present:
comfy.model_management.load_models_gpu([finetuned_model, original_model], force_patch_weights=True)
logging.info(
"LoraExtractKJ: detected scaled fp8 weights (finetuned=%s, original=%s); using high-precision diff path.",
scaled_fp8_ft is not None,
scaled_fp8_orig is not None,
)
sd_override = _build_scaled_fp8_diff(
finetuned_model, original_model, "diffusion_model.", bias_diff
)
comfy.model_management.soft_empty_cache()
else:
m = finetuned_model.clone()
kp = original_model.get_key_patches("diffusion_model.")
for k in kp:
m.add_patches({k: kp[k]}, - 1.0, 1.0)
model_diff = m
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
output_sd = {} output_sd = {}
if model_diff is not None: if model_diff is not None:
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff, adaptive_param=adaptive_param, clamp_quantile=clamp_quantile) output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff, adaptive_param=adaptive_param, clamp_quantile=clamp_quantile)
elif sd_override is not None:
output_sd = calc_lora_model(None, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff, adaptive_param=adaptive_param, clamp_quantile=clamp_quantile, sd_override=sd_override)
if "adaptive" in lora_type: if "adaptive" in lora_type:
rank_str = f"{lora_type}_{adaptive_param:.2f}" rank_str = f"{lora_type}_{adaptive_param:.2f}"
else: else:

View File

@ -3,15 +3,17 @@ from comfy.ldm.modules import attention as comfy_attention
import logging import logging
import torch import torch
import importlib import importlib
import math
import folder_paths import folder_paths
import comfy.model_management as mm import comfy.model_management as mm
from comfy.cli_args import args from comfy.cli_args import args
from comfy.ldm.modules.attention import wrap_attn from comfy.ldm.modules.attention import wrap_attn, optimized_attention
import comfy.model_patcher import comfy.model_patcher
import comfy.utils import comfy.utils
import comfy.sd import comfy.sd
try: try:
from comfy_api.latest import io from comfy_api.latest import io
v3_available = True v3_available = True
@ -675,6 +677,7 @@ class TorchCompileModelFluxAdvancedV2:
try: try:
if double_blocks: if double_blocks:
for i, block in enumerate(diffusion_model.double_blocks): for i, block in enumerate(diffusion_model.double_blocks):
print("Adding double block to compile list", i)
compile_key_list.append(f"diffusion_model.double_blocks.{i}") compile_key_list.append(f"diffusion_model.double_blocks.{i}")
if single_blocks: if single_blocks:
for i, block in enumerate(diffusion_model.single_blocks): for i, block in enumerate(diffusion_model.single_blocks):
@ -718,7 +721,7 @@ class TorchCompileModelHyVideo:
} }
RETURN_TYPES = ("MODEL",) RETURN_TYPES = ("MODEL",)
FUNCTION = "patch" FUNCTION = "patch"
DEPRECATED = True
CATEGORY = "KJNodes/torchcompile" CATEGORY = "KJNodes/torchcompile"
EXPERIMENTAL = True EXPERIMENTAL = True
@ -2005,3 +2008,126 @@ else:
FUNCTION = "" FUNCTION = ""
CATEGORY = "" CATEGORY = ""
DESCRIPTION = "This node requires newer ComfyUI" DESCRIPTION = "This node requires newer ComfyUI"
try:
from torch.nn.attention.flex_attention import flex_attention, BlockMask
except:
flex_attention = None
BlockMask = None
class NABLA_AttentionKJ():
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL",),
"latent": ("LATENT", {"tooltip": "Only used to get the latent shape"}),
"window_time": ("INT", {"default": 11, "min": 1, "tooltip": "Temporal attention window size"}),
"window_width": ("INT", {"default": 3, "min": 1, "tooltip": "Spatial attention window size"}),
"window_height": ("INT", {"default": 3, "min": 1, "tooltip": "Spatial attention window size"}),
"sparsity": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 1.0, "step": 0.01}),
"torch_compile": ("BOOLEAN", {"default": True, "tooltip": "Most likely required for reasonable memory usage"})
},
}
RETURN_TYPES = ("MODEL", )
FUNCTION = "patch"
DESCRIPTION = "Experimental node for patching attention mode to use NABLA sparse attention for video models, currently only works with Kadinsky5"
CATEGORY = "KJNodes/experimental"
def patch(self, model, latent, window_time, window_width, window_height, sparsity, torch_compile):
if flex_attention is None or BlockMask is None:
raise RuntimeError("can't import flex_attention from torch.nn.attention, requires newer pytorch version")
model_clone = model.clone()
samples = latent["samples"]
sparse_params = get_sparse_params(samples, window_time, window_height, window_width, sparsity)
nabla_attention = NABLA_Attention(sparse_params)
def attention_override_nabla(func, *args, **kwargs):
return nabla_attention(*args, **kwargs)
if torch_compile:
attention_override_nabla = torch.compile(attention_override_nabla, mode="max-autotune-no-cudagraphs", dynamic=True)
# attention override
model_clone.model_options["transformer_options"]["optimized_attention_override"] = attention_override_nabla
return model_clone,
class NABLA_Attention():
def __init__(self, sparse_params):
self.sparse_params = sparse_params
def __call__(self, q, k, v, heads, **kwargs):
if q.shape[-2] < 3000 or k.shape[-2] < 3000:
return optimized_attention(q, k, v, heads, **kwargs)
block_mask = self.nablaT_v2(q, k, self.sparse_params["sta_mask"], thr=self.sparse_params["P"])
out = flex_attention(q, k, v, block_mask=block_mask).transpose(1, 2).contiguous().flatten(-2, -1)
return out
def nablaT_v2(self, q, k, sta, thr=0.9):
# Map estimation
BLOCK_SIZE = 64
B, h, S, D = q.shape
s1 = S // BLOCK_SIZE
qa = q.reshape(B, h, s1, BLOCK_SIZE, D).mean(-2)
ka = k.reshape(B, h, s1, BLOCK_SIZE, D).mean(-2).transpose(-2, -1)
map = qa @ ka
map = torch.softmax(map / math.sqrt(D), dim=-1)
# Map binarization
vals, inds = map.sort(-1)
cvals = vals.cumsum_(-1)
mask = (cvals >= 1 - thr).int()
mask = mask.gather(-1, inds.argsort(-1))
mask = torch.logical_or(mask, sta)
# BlockMask creation
kv_nb = mask.sum(-1).to(torch.int32)
kv_inds = mask.argsort(dim=-1, descending=True).to(torch.int32)
return BlockMask.from_kv_blocks(torch.zeros_like(kv_nb), kv_inds, kv_nb, kv_inds, BLOCK_SIZE=BLOCK_SIZE, mask_mod=None)
def fast_sta_nabla(T, H, W, wT=3, wH=3, wW=3):
l = torch.Tensor([T, H, W]).amax()
r = torch.arange(0, l, 1, dtype=torch.int16, device=mm.get_torch_device())
mat = (r.unsqueeze(1) - r.unsqueeze(0)).abs()
sta_t, sta_h, sta_w = (
mat[:T, :T].flatten(),
mat[:H, :H].flatten(),
mat[:W, :W].flatten(),
)
sta_t = sta_t <= wT // 2
sta_h = sta_h <= wH // 2
sta_w = sta_w <= wW // 2
sta_hw = (sta_h.unsqueeze(1) * sta_w.unsqueeze(0)).reshape(H, H, W, W).transpose(1, 2).flatten()
sta = (sta_t.unsqueeze(1) * sta_hw.unsqueeze(0)).reshape(T, T, H * W, H * W).transpose(1, 2)
return sta.reshape(T * H * W, T * H * W)
def get_sparse_params(x, wT, wH, wW, sparsity=0.9):
B, C, T, H, W = x.shape
print("x shape:", x.shape)
patch_size = (1, 2, 2)
T, H, W = (
T // patch_size[0],
H // patch_size[1],
W // patch_size[2],
)
sta_mask = fast_sta_nabla(T, H // 8, W // 8, wT, wH, wW)
sparse_params = {
"sta_mask": sta_mask.unsqueeze_(0).unsqueeze_(0),
"to_fractal": True,
"P": sparsity,
"wT": wT,
"wH": wH,
"wW": wW,
"add_sta": True,
"visual_shape": (T, H, W),
"method": "topcdf",
}
return sparse_params