import nodes import torch import torch.nn.functional as F import scipy.ndimage import numpy as np from nodes import MAX_RESOLUTION class INTConstant: @classmethod def INPUT_TYPES(s): return {"required": { "value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), }, } RETURN_TYPES = ("INT",) RETURN_NAMES = ("value",) FUNCTION = "get_value" CATEGORY = "KJNodes" def get_value(self, value): return (value,) def gaussian_kernel(kernel_size: int, sigma: float, device=None): x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij") d = torch.sqrt(x * x + y * y) g = torch.exp(-(d * d) / (2.0 * sigma * sigma)) return g / g.sum() class GrowMaskWithBlur: @classmethod def INPUT_TYPES(cls): return { "required": { "mask": ("MASK",), "expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}), "tapered_corners": ("BOOLEAN", {"default": True}), "flip_input": ("BOOLEAN", {"default": False}), "blur_radius": ("INT", { "default": 1, "min": 1, "max": 31, "step": 1 }), "sigma": ("FLOAT", { "default": 1.0, "min": 0.1, "max": 10.0, "step": 0.1 }), }, } CATEGORY = "KJNodes" RETURN_TYPES = ("MASK", "MASK",) RETURN_NAMES = ("mask", "mask_inverted",) FUNCTION = "expand_mask" def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, sigma): if( flip_input ): mask = 1.0 - mask c = 0 if tapered_corners else 1 kernel = np.array([[c, 1, c], [1, 1, 1], [c, 1, c]]) growmask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) out = [] for m in growmask: output = m.numpy() for _ in range(abs(expand)): if expand < 0: output = scipy.ndimage.grey_erosion(output, footprint=kernel) else: output = scipy.ndimage.grey_dilation(output, footprint=kernel) output = torch.from_numpy(output) out.append(output) blurred = torch.stack(out, dim=0).reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) batch_size, height, width, channels = blurred.shape if blur_radius != 0: blurkernel_size = blur_radius * 2 + 1 blurkernel = gaussian_kernel(blurkernel_size, sigma, device=blurred.device).repeat(channels, 1, 1).unsqueeze(1) blurred = blurred.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C) padded_image = F.pad(blurred, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect') blurred = F.conv2d(padded_image, blurkernel, padding=blurkernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius] blurred = blurred.permute(0, 2, 3, 1) blurred = blurred[:, :, :, 0] return (blurred, 1.0 - blurred,) class PlotNode: @classmethod def INPUT_TYPES(s): return {"required": { "start": ("FLOAT", {"default": 0.5, "min": 0.5, "max": 1.0}), "max_frames": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), }} RETURN_TYPES = ("FLOAT", "INT",) FUNCTION = "plot" CATEGORY = "KJNodes" def plot(self, start, max_frames): result = start + max_frames return (result,) class ConditioningMultiCombine: @classmethod def INPUT_TYPES(s): return { "required": { "inputcount": ("INT", {"default": 2, "min": 2, "max": 20, "step": 1}), "conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", ), }, } RETURN_TYPES = ("CONDITIONING", "INT") RETURN_NAMES = ("combined", "inputcount") FUNCTION = "combine" CATEGORY = "KJNodes" def combine(self, inputcount, **kwargs): cond_combine_node = nodes.ConditioningCombine() cond = kwargs["conditioning_1"] for c in range(1, inputcount): new_cond = kwargs[f"conditioning_{c + 1}"] cond = cond_combine_node.combine(new_cond, cond)[0] return (cond, inputcount,) class ConditioningSetMaskAndCombine: @classmethod def INPUT_TYPES(cls): return { "required": { "positive_1": ("CONDITIONING", ), "negative_1": ("CONDITIONING", ), "positive_2": ("CONDITIONING", ), "negative_2": ("CONDITIONING", ), "mask_1": ("MASK", ), "mask_2": ("MASK", ), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "set_cond_area": (["default", "mask bounds"],), } } RETURN_TYPES = ("CONDITIONING","CONDITIONING",) RETURN_NAMES = ("combined_positive", "combined_negative",) FUNCTION = "append" CATEGORY = "KJNodes" def append(self, positive_1, negative_1, positive_2, negative_2, mask_1, mask_2, set_cond_area, strength): c = [] c2 = [] set_area_to_bounds = False if set_cond_area != "default": set_area_to_bounds = True if len(mask_1.shape) < 3: mask_1 = mask_1.unsqueeze(0) if len(mask_2.shape) < 3: mask_2 = mask_2.unsqueeze(0) for t in positive_1: n = [t[0], t[1].copy()] _, h, w = mask_1.shape n[1]['mask'] = mask_1 n[1]['set_area_to_bounds'] = set_area_to_bounds n[1]['mask_strength'] = strength c.append(n) for t in positive_2: n = [t[0], t[1].copy()] _, h, w = mask_2.shape n[1]['mask'] = mask_2 n[1]['set_area_to_bounds'] = set_area_to_bounds n[1]['mask_strength'] = strength c.append(n) for t in negative_1: n = [t[0], t[1].copy()] _, h, w = mask_1.shape n[1]['mask'] = mask_1 n[1]['set_area_to_bounds'] = set_area_to_bounds n[1]['mask_strength'] = strength c2.append(n) for t in negative_2: n = [t[0], t[1].copy()] _, h, w = mask_2.shape n[1]['mask'] = mask_2 n[1]['set_area_to_bounds'] = set_area_to_bounds n[1]['mask_strength'] = strength c2.append(n) return (c, c2) NODE_CLASS_MAPPINGS = { "INTConstant": INTConstant, "ConditioningMultiCombine": ConditioningMultiCombine, "ConditioningSetMaskAndCombine": ConditioningSetMaskAndCombine, "GrowMaskWithBlur": GrowMaskWithBlur, } NODE_DISPLAY_NAME_MAPPINGS = { "INTConstant": "INT Constant", "ConditioningMultiCombine": "Conditioning Multi Combine", "ConditioningSetMaskAndCombine": "ConditioningSetMaskAndCombine", "GrowMaskWithBlur": "GrowMaskWithBlur", }