mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-09 04:44:30 +08:00
2702 lines
106 KiB
Python
2702 lines
106 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
from PIL import Image
|
|
import json, re, os, io, time
|
|
import re
|
|
import importlib
|
|
|
|
from comfy import model_management
|
|
import folder_paths
|
|
from nodes import MAX_RESOLUTION
|
|
from comfy.utils import common_upscale, ProgressBar, load_torch_file
|
|
from comfy.comfy_types.node_typing import IO
|
|
|
|
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
folder_paths.add_model_folder_path("kjnodes_fonts", os.path.join(script_directory, "fonts"))
|
|
|
|
class BOOLConstant:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"value": ("BOOLEAN", {"default": True}),
|
|
},
|
|
}
|
|
RETURN_TYPES = ("BOOLEAN",)
|
|
RETURN_NAMES = ("value",)
|
|
FUNCTION = "get_value"
|
|
CATEGORY = "KJNodes/constants"
|
|
|
|
def get_value(self, value):
|
|
return (value,)
|
|
|
|
class INTConstant:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"value": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff}),
|
|
},
|
|
}
|
|
RETURN_TYPES = ("INT",)
|
|
RETURN_NAMES = ("value",)
|
|
FUNCTION = "get_value"
|
|
CATEGORY = "KJNodes/constants"
|
|
|
|
def get_value(self, value):
|
|
return (value,)
|
|
|
|
class FloatConstant:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"value": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.00001}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("FLOAT",)
|
|
RETURN_NAMES = ("value",)
|
|
FUNCTION = "get_value"
|
|
CATEGORY = "KJNodes/constants"
|
|
|
|
def get_value(self, value):
|
|
return (round(value, 6),)
|
|
|
|
class StringConstant:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"string": ("STRING", {"default": '', "multiline": False}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "passtring"
|
|
CATEGORY = "KJNodes/constants"
|
|
|
|
def passtring(self, string):
|
|
return (string, )
|
|
|
|
class StringConstantMultiline:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"string": ("STRING", {"default": "", "multiline": True}),
|
|
"strip_newlines": ("BOOLEAN", {"default": True}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "stringify"
|
|
CATEGORY = "KJNodes/constants"
|
|
|
|
def stringify(self, string, strip_newlines):
|
|
new_string = []
|
|
for line in io.StringIO(string):
|
|
if not line.strip().startswith("\n") and strip_newlines:
|
|
line = line.replace("\n", '')
|
|
new_string.append(line)
|
|
new_string = "\n".join(new_string)
|
|
|
|
return (new_string, )
|
|
|
|
|
|
|
|
class ScaleBatchPromptSchedule:
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "scaleschedule"
|
|
CATEGORY = "KJNodes/misc"
|
|
DESCRIPTION = """
|
|
Scales a batch schedule from Fizz' nodes BatchPromptSchedule
|
|
to a different frame count.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"input_str": ("STRING", {"forceInput": True,"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n"}),
|
|
"old_frame_count": ("INT", {"forceInput": True,"default": 1,"min": 1, "max": 4096, "step": 1}),
|
|
"new_frame_count": ("INT", {"forceInput": True,"default": 1,"min": 1, "max": 4096, "step": 1}),
|
|
|
|
},
|
|
}
|
|
|
|
def scaleschedule(self, old_frame_count, input_str, new_frame_count):
|
|
pattern = r'"(\d+)"\s*:\s*"(.*?)"(?:,|\Z)'
|
|
frame_strings = dict(re.findall(pattern, input_str))
|
|
|
|
# Calculate the scaling factor
|
|
scaling_factor = (new_frame_count - 1) / (old_frame_count - 1)
|
|
|
|
# Initialize a dictionary to store the new frame numbers and strings
|
|
new_frame_strings = {}
|
|
|
|
# Iterate over the frame numbers and strings
|
|
for old_frame, string in frame_strings.items():
|
|
# Calculate the new frame number
|
|
new_frame = int(round(int(old_frame) * scaling_factor))
|
|
|
|
# Store the new frame number and corresponding string
|
|
new_frame_strings[new_frame] = string
|
|
|
|
# Format the output string
|
|
output_str = ', '.join([f'"{k}":"{v}"' for k, v in sorted(new_frame_strings.items())])
|
|
return (output_str,)
|
|
|
|
|
|
class GetLatentsFromBatchIndexed:
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "indexedlatentsfrombatch"
|
|
CATEGORY = "KJNodes/latents"
|
|
DESCRIPTION = """
|
|
Selects and returns the latents at the specified indices as an latent batch.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"latents": ("LATENT",),
|
|
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
|
|
"latent_format": (["BCHW", "BTCHW", "BCTHW"], {"default": "BCHW"}),
|
|
},
|
|
}
|
|
|
|
def indexedlatentsfrombatch(self, latents, indexes, latent_format):
|
|
|
|
samples = latents.copy()
|
|
latent_samples = samples["samples"]
|
|
|
|
# Parse the indexes string into a list of integers
|
|
index_list = [int(index.strip()) for index in indexes.split(',')]
|
|
|
|
# Convert list of indices to a PyTorch tensor
|
|
indices_tensor = torch.tensor(index_list, dtype=torch.long)
|
|
|
|
# Select the latents at the specified indices
|
|
if latent_format == "BCHW":
|
|
chosen_latents = latent_samples[indices_tensor]
|
|
elif latent_format == "BTCHW":
|
|
chosen_latents = latent_samples[:, indices_tensor]
|
|
elif latent_format == "BCTHW":
|
|
chosen_latents = latent_samples[:, :, indices_tensor]
|
|
|
|
samples["samples"] = chosen_latents
|
|
return (samples,)
|
|
|
|
|
|
class ConditioningMultiCombine:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 20, "step": 1}),
|
|
"operation": (["combine", "concat"], {"default": "combine"}),
|
|
"conditioning_1": ("CONDITIONING", ),
|
|
"conditioning_2": ("CONDITIONING", ),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "INT")
|
|
RETURN_NAMES = ("combined", "inputcount")
|
|
FUNCTION = "combine"
|
|
CATEGORY = "KJNodes/masking/conditioning"
|
|
DESCRIPTION = """
|
|
Combines multiple conditioning nodes into one
|
|
"""
|
|
|
|
def combine(self, inputcount, operation, **kwargs):
|
|
from nodes import ConditioningCombine
|
|
from nodes import ConditioningConcat
|
|
cond_combine_node = ConditioningCombine()
|
|
cond_concat_node = ConditioningConcat()
|
|
cond = kwargs["conditioning_1"]
|
|
for c in range(1, inputcount):
|
|
new_cond = kwargs[f"conditioning_{c + 1}"]
|
|
if operation == "combine":
|
|
cond = cond_combine_node.combine(new_cond, cond)[0]
|
|
elif operation == "concat":
|
|
cond = cond_concat_node.concat(cond, new_cond)[0]
|
|
return (cond, inputcount,)
|
|
|
|
class AppendStringsToList:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"string1": ("STRING", {"default": '', "forceInput": True}),
|
|
"string2": ("STRING", {"default": '', "forceInput": True}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "joinstring"
|
|
CATEGORY = "KJNodes/text"
|
|
|
|
def joinstring(self, string1, string2):
|
|
if not isinstance(string1, list):
|
|
string1 = [string1]
|
|
if not isinstance(string2, list):
|
|
string2 = [string2]
|
|
|
|
joined_string = string1 + string2
|
|
return (joined_string, )
|
|
|
|
class JoinStrings:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"delimiter": ("STRING", {"default": ' ', "multiline": False}),
|
|
},
|
|
"optional": {
|
|
"string1": ("STRING", {"default": '', "forceInput": True}),
|
|
"string2": ("STRING", {"default": '', "forceInput": True}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "joinstring"
|
|
CATEGORY = "KJNodes/text"
|
|
|
|
def joinstring(self, delimiter, string1="", string2=""):
|
|
joined_string = string1 + delimiter + string2
|
|
return (joined_string, )
|
|
|
|
class JoinStringMulti:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
"string_1": ("STRING", {"default": '', "forceInput": True}),
|
|
"delimiter": ("STRING", {"default": ' ', "multiline": False}),
|
|
"return_list": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"string_2": ("STRING", {"default": '', "forceInput": True}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
RETURN_NAMES = ("string",)
|
|
FUNCTION = "combine"
|
|
CATEGORY = "KJNodes/text"
|
|
DESCRIPTION = """
|
|
Creates single string, or a list of strings, from
|
|
multiple input strings.
|
|
You can set how many inputs the node has,
|
|
with the **inputcount** and clicking update.
|
|
"""
|
|
|
|
def combine(self, inputcount, delimiter, **kwargs):
|
|
string = kwargs["string_1"]
|
|
return_list = kwargs["return_list"]
|
|
strings = [string] # Initialize a list with the first string
|
|
for c in range(1, inputcount):
|
|
new_string = kwargs.get(f"string_{c + 1}", "")
|
|
if not new_string:
|
|
continue
|
|
if return_list:
|
|
strings.append(new_string) # Add new string to the list
|
|
else:
|
|
string = string + delimiter + new_string
|
|
if return_list:
|
|
return (strings,) # Return the list of strings
|
|
else:
|
|
return (string,) # Return the combined string
|
|
|
|
class CondPassThrough:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
},
|
|
"optional": {
|
|
"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING",)
|
|
RETURN_NAMES = ("positive", "negative")
|
|
FUNCTION = "passthrough"
|
|
CATEGORY = "KJNodes/misc"
|
|
DESCRIPTION = """
|
|
Simply passes through the positive and negative conditioning,
|
|
workaround for Set node not allowing bypassed inputs.
|
|
"""
|
|
|
|
def passthrough(self, positive=None, negative=None):
|
|
return (positive, negative,)
|
|
|
|
class ModelPassThrough:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
},
|
|
"optional": {
|
|
"model": ("MODEL", ),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL", )
|
|
RETURN_NAMES = ("model",)
|
|
FUNCTION = "passthrough"
|
|
CATEGORY = "KJNodes/misc"
|
|
DESCRIPTION = """
|
|
Simply passes through the model,
|
|
workaround for Set node not allowing bypassed inputs.
|
|
"""
|
|
|
|
def passthrough(self, model=None):
|
|
return (model,)
|
|
|
|
def append_helper(t, mask, c, set_area_to_bounds, strength):
|
|
n = [t[0], t[1].copy()]
|
|
_, h, w = mask.shape
|
|
n[1]['mask'] = mask
|
|
n[1]['set_area_to_bounds'] = set_area_to_bounds
|
|
n[1]['mask_strength'] = strength
|
|
c.append(n)
|
|
|
|
class ConditioningSetMaskAndCombine:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"positive_1": ("CONDITIONING", ),
|
|
"negative_1": ("CONDITIONING", ),
|
|
"positive_2": ("CONDITIONING", ),
|
|
"negative_2": ("CONDITIONING", ),
|
|
"mask_1": ("MASK", ),
|
|
"mask_2": ("MASK", ),
|
|
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"set_cond_area": (["default", "mask bounds"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
|
|
RETURN_NAMES = ("combined_positive", "combined_negative",)
|
|
FUNCTION = "append"
|
|
CATEGORY = "KJNodes/masking/conditioning"
|
|
DESCRIPTION = """
|
|
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
|
|
"""
|
|
|
|
def append(self, positive_1, negative_1, positive_2, negative_2, mask_1, mask_2, set_cond_area, mask_1_strength, mask_2_strength):
|
|
c = []
|
|
c2 = []
|
|
set_area_to_bounds = False
|
|
if set_cond_area != "default":
|
|
set_area_to_bounds = True
|
|
if len(mask_1.shape) < 3:
|
|
mask_1 = mask_1.unsqueeze(0)
|
|
if len(mask_2.shape) < 3:
|
|
mask_2 = mask_2.unsqueeze(0)
|
|
for t in positive_1:
|
|
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
|
|
for t in positive_2:
|
|
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
|
|
for t in negative_1:
|
|
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
|
|
for t in negative_2:
|
|
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
|
|
return (c, c2)
|
|
|
|
class ConditioningSetMaskAndCombine3:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"positive_1": ("CONDITIONING", ),
|
|
"negative_1": ("CONDITIONING", ),
|
|
"positive_2": ("CONDITIONING", ),
|
|
"negative_2": ("CONDITIONING", ),
|
|
"positive_3": ("CONDITIONING", ),
|
|
"negative_3": ("CONDITIONING", ),
|
|
"mask_1": ("MASK", ),
|
|
"mask_2": ("MASK", ),
|
|
"mask_3": ("MASK", ),
|
|
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"set_cond_area": (["default", "mask bounds"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
|
|
RETURN_NAMES = ("combined_positive", "combined_negative",)
|
|
FUNCTION = "append"
|
|
CATEGORY = "KJNodes/masking/conditioning"
|
|
DESCRIPTION = """
|
|
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
|
|
"""
|
|
|
|
def append(self, positive_1, negative_1, positive_2, positive_3, negative_2, negative_3, mask_1, mask_2, mask_3, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength):
|
|
c = []
|
|
c2 = []
|
|
set_area_to_bounds = False
|
|
if set_cond_area != "default":
|
|
set_area_to_bounds = True
|
|
if len(mask_1.shape) < 3:
|
|
mask_1 = mask_1.unsqueeze(0)
|
|
if len(mask_2.shape) < 3:
|
|
mask_2 = mask_2.unsqueeze(0)
|
|
if len(mask_3.shape) < 3:
|
|
mask_3 = mask_3.unsqueeze(0)
|
|
for t in positive_1:
|
|
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
|
|
for t in positive_2:
|
|
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
|
|
for t in positive_3:
|
|
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
|
|
for t in negative_1:
|
|
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
|
|
for t in negative_2:
|
|
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
|
|
for t in negative_3:
|
|
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
|
|
return (c, c2)
|
|
|
|
class ConditioningSetMaskAndCombine4:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"positive_1": ("CONDITIONING", ),
|
|
"negative_1": ("CONDITIONING", ),
|
|
"positive_2": ("CONDITIONING", ),
|
|
"negative_2": ("CONDITIONING", ),
|
|
"positive_3": ("CONDITIONING", ),
|
|
"negative_3": ("CONDITIONING", ),
|
|
"positive_4": ("CONDITIONING", ),
|
|
"negative_4": ("CONDITIONING", ),
|
|
"mask_1": ("MASK", ),
|
|
"mask_2": ("MASK", ),
|
|
"mask_3": ("MASK", ),
|
|
"mask_4": ("MASK", ),
|
|
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_4_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"set_cond_area": (["default", "mask bounds"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
|
|
RETURN_NAMES = ("combined_positive", "combined_negative",)
|
|
FUNCTION = "append"
|
|
CATEGORY = "KJNodes/masking/conditioning"
|
|
DESCRIPTION = """
|
|
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
|
|
"""
|
|
|
|
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, negative_2, negative_3, negative_4, mask_1, mask_2, mask_3, mask_4, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength, mask_4_strength):
|
|
c = []
|
|
c2 = []
|
|
set_area_to_bounds = False
|
|
if set_cond_area != "default":
|
|
set_area_to_bounds = True
|
|
if len(mask_1.shape) < 3:
|
|
mask_1 = mask_1.unsqueeze(0)
|
|
if len(mask_2.shape) < 3:
|
|
mask_2 = mask_2.unsqueeze(0)
|
|
if len(mask_3.shape) < 3:
|
|
mask_3 = mask_3.unsqueeze(0)
|
|
if len(mask_4.shape) < 3:
|
|
mask_4 = mask_4.unsqueeze(0)
|
|
for t in positive_1:
|
|
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
|
|
for t in positive_2:
|
|
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
|
|
for t in positive_3:
|
|
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
|
|
for t in positive_4:
|
|
append_helper(t, mask_4, c, set_area_to_bounds, mask_4_strength)
|
|
for t in negative_1:
|
|
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
|
|
for t in negative_2:
|
|
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
|
|
for t in negative_3:
|
|
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
|
|
for t in negative_4:
|
|
append_helper(t, mask_4, c2, set_area_to_bounds, mask_4_strength)
|
|
return (c, c2)
|
|
|
|
class ConditioningSetMaskAndCombine5:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"positive_1": ("CONDITIONING", ),
|
|
"negative_1": ("CONDITIONING", ),
|
|
"positive_2": ("CONDITIONING", ),
|
|
"negative_2": ("CONDITIONING", ),
|
|
"positive_3": ("CONDITIONING", ),
|
|
"negative_3": ("CONDITIONING", ),
|
|
"positive_4": ("CONDITIONING", ),
|
|
"negative_4": ("CONDITIONING", ),
|
|
"positive_5": ("CONDITIONING", ),
|
|
"negative_5": ("CONDITIONING", ),
|
|
"mask_1": ("MASK", ),
|
|
"mask_2": ("MASK", ),
|
|
"mask_3": ("MASK", ),
|
|
"mask_4": ("MASK", ),
|
|
"mask_5": ("MASK", ),
|
|
"mask_1_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_2_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_3_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_4_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"mask_5_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"set_cond_area": (["default", "mask bounds"],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
|
|
RETURN_NAMES = ("combined_positive", "combined_negative",)
|
|
FUNCTION = "append"
|
|
CATEGORY = "KJNodes/masking/conditioning"
|
|
DESCRIPTION = """
|
|
Bundles multiple conditioning mask and combine nodes into one,functionality is identical to ComfyUI native nodes
|
|
"""
|
|
|
|
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, positive_5, negative_2, negative_3, negative_4, negative_5, mask_1, mask_2, mask_3, mask_4, mask_5, set_cond_area, mask_1_strength, mask_2_strength, mask_3_strength, mask_4_strength, mask_5_strength):
|
|
c = []
|
|
c2 = []
|
|
set_area_to_bounds = False
|
|
if set_cond_area != "default":
|
|
set_area_to_bounds = True
|
|
if len(mask_1.shape) < 3:
|
|
mask_1 = mask_1.unsqueeze(0)
|
|
if len(mask_2.shape) < 3:
|
|
mask_2 = mask_2.unsqueeze(0)
|
|
if len(mask_3.shape) < 3:
|
|
mask_3 = mask_3.unsqueeze(0)
|
|
if len(mask_4.shape) < 3:
|
|
mask_4 = mask_4.unsqueeze(0)
|
|
if len(mask_5.shape) < 3:
|
|
mask_5 = mask_5.unsqueeze(0)
|
|
for t in positive_1:
|
|
append_helper(t, mask_1, c, set_area_to_bounds, mask_1_strength)
|
|
for t in positive_2:
|
|
append_helper(t, mask_2, c, set_area_to_bounds, mask_2_strength)
|
|
for t in positive_3:
|
|
append_helper(t, mask_3, c, set_area_to_bounds, mask_3_strength)
|
|
for t in positive_4:
|
|
append_helper(t, mask_4, c, set_area_to_bounds, mask_4_strength)
|
|
for t in positive_5:
|
|
append_helper(t, mask_5, c, set_area_to_bounds, mask_5_strength)
|
|
for t in negative_1:
|
|
append_helper(t, mask_1, c2, set_area_to_bounds, mask_1_strength)
|
|
for t in negative_2:
|
|
append_helper(t, mask_2, c2, set_area_to_bounds, mask_2_strength)
|
|
for t in negative_3:
|
|
append_helper(t, mask_3, c2, set_area_to_bounds, mask_3_strength)
|
|
for t in negative_4:
|
|
append_helper(t, mask_4, c2, set_area_to_bounds, mask_4_strength)
|
|
for t in negative_5:
|
|
append_helper(t, mask_5, c2, set_area_to_bounds, mask_5_strength)
|
|
return (c, c2)
|
|
|
|
class VRAM_Debug:
|
|
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
|
|
"empty_cache": ("BOOLEAN", {"default": True}),
|
|
"gc_collect": ("BOOLEAN", {"default": True}),
|
|
"unload_all_models": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"any_input": (IO.ANY,),
|
|
"image_pass": ("IMAGE",),
|
|
"model_pass": ("MODEL",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = (IO.ANY, "IMAGE","MODEL","INT", "INT",)
|
|
RETURN_NAMES = ("any_output", "image_pass", "model_pass", "freemem_before", "freemem_after")
|
|
FUNCTION = "VRAMdebug"
|
|
CATEGORY = "KJNodes/misc"
|
|
DESCRIPTION = """
|
|
Returns the inputs unchanged, they are only used as triggers,
|
|
and performs comfy model management functions and garbage collection,
|
|
reports free VRAM before and after the operations.
|
|
"""
|
|
|
|
def VRAMdebug(self, gc_collect, empty_cache, unload_all_models, image_pass=None, model_pass=None, any_input=None):
|
|
freemem_before = model_management.get_free_memory()
|
|
print("VRAMdebug: free memory before: ", f"{freemem_before:,.0f}")
|
|
if empty_cache:
|
|
model_management.soft_empty_cache()
|
|
if unload_all_models:
|
|
model_management.unload_all_models()
|
|
if gc_collect:
|
|
import gc
|
|
gc.collect()
|
|
freemem_after = model_management.get_free_memory()
|
|
print("VRAMdebug: free memory after: ", f"{freemem_after:,.0f}")
|
|
print("VRAMdebug: freed memory: ", f"{freemem_after - freemem_before:,.0f}")
|
|
return {"ui": {
|
|
"text": [f"{freemem_before:,.0f}x{freemem_after:,.0f}"]},
|
|
"result": (any_input, image_pass, model_pass, freemem_before, freemem_after)
|
|
}
|
|
|
|
class SomethingToString:
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"input": (IO.ANY, ),
|
|
},
|
|
"optional": {
|
|
"prefix": ("STRING", {"default": ""}),
|
|
"suffix": ("STRING", {"default": ""}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "stringify"
|
|
CATEGORY = "KJNodes/text"
|
|
DESCRIPTION = """
|
|
Converts any type to a string.
|
|
"""
|
|
|
|
def stringify(self, input, prefix="", suffix=""):
|
|
if isinstance(input, (int, float, bool, str)):
|
|
stringified = str(input)
|
|
elif isinstance(input, list):
|
|
stringified = ', '.join(str(item) for item in input)
|
|
else:
|
|
return input,
|
|
if prefix: # Check if prefix is not empty
|
|
stringified = prefix + stringified # Add the prefix
|
|
if suffix: # Check if suffix is not empty
|
|
stringified = stringified + suffix # Add the suffix
|
|
|
|
return (stringified,)
|
|
|
|
class Sleep:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"input": (IO.ANY, ),
|
|
"minutes": ("INT", {"default": 0, "min": 0, "max": 1439}),
|
|
"seconds": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 59.99, "step": 0.01}),
|
|
},
|
|
}
|
|
RETURN_TYPES = (IO.ANY,)
|
|
FUNCTION = "sleepdelay"
|
|
CATEGORY = "KJNodes/misc"
|
|
DESCRIPTION = """
|
|
Delays the execution for the input amount of time.
|
|
"""
|
|
|
|
def sleepdelay(self, input, minutes, seconds):
|
|
total_seconds = minutes * 60 + seconds
|
|
time.sleep(total_seconds)
|
|
return input,
|
|
|
|
class EmptyLatentImagePresets:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"dimensions": (
|
|
[
|
|
'512 x 512 (1:1)',
|
|
'768 x 512 (1.5:1)',
|
|
'960 x 512 (1.875:1)',
|
|
'1024 x 512 (2:1)',
|
|
'1024 x 576 (1.778:1)',
|
|
'1536 x 640 (2.4:1)',
|
|
'1344 x 768 (1.75:1)',
|
|
'1216 x 832 (1.46:1)',
|
|
'1152 x 896 (1.286:1)',
|
|
'1024 x 1024 (1:1)',
|
|
],
|
|
{
|
|
"default": '512 x 512 (1:1)'
|
|
}),
|
|
|
|
"invert": ("BOOLEAN", {"default": False}),
|
|
"batch_size": ("INT", {
|
|
"default": 1,
|
|
"min": 1,
|
|
"max": 4096
|
|
}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT", "INT", "INT")
|
|
RETURN_NAMES = ("Latent", "Width", "Height")
|
|
FUNCTION = "generate"
|
|
CATEGORY = "KJNodes/latents"
|
|
|
|
def generate(self, dimensions, invert, batch_size):
|
|
from nodes import EmptyLatentImage
|
|
result = [x.strip() for x in dimensions.split('x')]
|
|
|
|
# Remove the aspect ratio part
|
|
result[0] = result[0].split('(')[0].strip()
|
|
result[1] = result[1].split('(')[0].strip()
|
|
|
|
if invert:
|
|
width = int(result[1].split(' ')[0])
|
|
height = int(result[0])
|
|
else:
|
|
width = int(result[0])
|
|
height = int(result[1].split(' ')[0])
|
|
latent = EmptyLatentImage().generate(width, height, batch_size)[0]
|
|
|
|
return (latent, int(width), int(height),)
|
|
|
|
class EmptyLatentImageCustomPresets:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
try:
|
|
with open(os.path.join(script_directory, 'custom_dimensions.json')) as f:
|
|
dimensions_dict = json.load(f)
|
|
except FileNotFoundError:
|
|
dimensions_dict = []
|
|
return {
|
|
"required": {
|
|
"dimensions": (
|
|
[f"{d['label']} - {d['value']}" for d in dimensions_dict],
|
|
),
|
|
|
|
"invert": ("BOOLEAN", {"default": False}),
|
|
"batch_size": ("INT", {
|
|
"default": 1,
|
|
"min": 1,
|
|
"max": 4096
|
|
}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT", "INT", "INT")
|
|
RETURN_NAMES = ("Latent", "Width", "Height")
|
|
FUNCTION = "generate"
|
|
CATEGORY = "KJNodes/latents"
|
|
DESCRIPTION = """
|
|
Generates an empty latent image with the specified dimensions.
|
|
The choices are loaded from 'custom_dimensions.json' in the nodes folder.
|
|
"""
|
|
|
|
def generate(self, dimensions, invert, batch_size):
|
|
from nodes import EmptyLatentImage
|
|
# Split the string into label and value
|
|
label, value = dimensions.split(' - ')
|
|
# Split the value into width and height
|
|
width, height = [x.strip() for x in value.split('x')]
|
|
|
|
if invert:
|
|
width, height = height, width
|
|
|
|
latent = EmptyLatentImage().generate(int(width), int(height), batch_size)[0]
|
|
|
|
return (latent, int(width), int(height),)
|
|
|
|
class WidgetToString:
|
|
@classmethod
|
|
def IS_CHANGED(cls,*,id,node_title,any_input,**kwargs):
|
|
if any_input is not None and (id != 0 or node_title != ""):
|
|
return float("NaN")
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"id": ("INT", {"default": 0, "min": 0, "max": 100000, "step": 1}),
|
|
"widget_name": ("STRING", {"multiline": False}),
|
|
"return_all": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"any_input": (IO.ANY, ),
|
|
"node_title": ("STRING", {"multiline": False}),
|
|
"allowed_float_decimals": ("INT", {"default": 2, "min": 0, "max": 10, "tooltip": "Number of decimal places to display for float values"}),
|
|
|
|
},
|
|
"hidden": {"extra_pnginfo": "EXTRA_PNGINFO",
|
|
"prompt": "PROMPT",
|
|
"unique_id": "UNIQUE_ID",},
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING", )
|
|
FUNCTION = "get_widget_value"
|
|
CATEGORY = "KJNodes/text"
|
|
DESCRIPTION = """
|
|
Selects a node and it's specified widget and outputs the value as a string.
|
|
If no node id or title is provided it will use the 'any_input' link and use that node.
|
|
To see node id's, enable node id display from Manager badge menu.
|
|
Alternatively you can search with the node title. Node titles ONLY exist if they
|
|
are manually edited!
|
|
The 'any_input' is required for making sure the node you want the value from exists in the workflow.
|
|
"""
|
|
|
|
def get_widget_value(self, id, widget_name, extra_pnginfo, prompt, unique_id, return_all=False, any_input=None, node_title="", allowed_float_decimals=2):
|
|
workflow = extra_pnginfo["workflow"]
|
|
#print(json.dumps(workflow, indent=4))
|
|
results = []
|
|
node_id = None # Initialize node_id to handle cases where no match is found
|
|
link_id = None
|
|
link_to_node_map = {}
|
|
|
|
for node in workflow["nodes"]:
|
|
if node_title:
|
|
if "title" in node:
|
|
if node["title"] == node_title:
|
|
node_id = node["id"]
|
|
break
|
|
else:
|
|
print("Node title not found.")
|
|
elif id != 0:
|
|
if node["id"] == id:
|
|
node_id = id
|
|
break
|
|
elif any_input is not None:
|
|
if node["type"] == "WidgetToString" and node["id"] == int(unique_id) and not link_id:
|
|
for node_input in node["inputs"]:
|
|
if node_input["name"] == "any_input":
|
|
link_id = node_input["link"]
|
|
|
|
# Construct a map of links to node IDs for future reference
|
|
node_outputs = node.get("outputs", None)
|
|
if not node_outputs:
|
|
continue
|
|
for output in node_outputs:
|
|
node_links = output.get("links", None)
|
|
if not node_links:
|
|
continue
|
|
for link in node_links:
|
|
link_to_node_map[link] = node["id"]
|
|
if link_id and link == link_id:
|
|
break
|
|
|
|
if link_id:
|
|
node_id = link_to_node_map.get(link_id, None)
|
|
|
|
if node_id is None:
|
|
raise ValueError("No matching node found for the given title or id")
|
|
|
|
values = prompt[str(node_id)]
|
|
if "inputs" in values:
|
|
if return_all:
|
|
# Format items based on type
|
|
formatted_items = []
|
|
for k, v in values["inputs"].items():
|
|
if isinstance(v, float):
|
|
item = f"{k}: {v:.{allowed_float_decimals}f}"
|
|
else:
|
|
item = f"{k}: {str(v)}"
|
|
formatted_items.append(item)
|
|
results.append(', '.join(formatted_items))
|
|
elif widget_name in values["inputs"]:
|
|
v = values["inputs"][widget_name]
|
|
if isinstance(v, float):
|
|
v = f"{v:.{allowed_float_decimals}f}"
|
|
else:
|
|
v = str(v)
|
|
return (v, )
|
|
else:
|
|
raise NameError(f"Widget not found: {node_id}.{widget_name}")
|
|
return (', '.join(results).strip(', '), )
|
|
|
|
class DummyOut:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"any_input": (IO.ANY, ),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = (IO.ANY,)
|
|
FUNCTION = "dummy"
|
|
CATEGORY = "KJNodes/misc"
|
|
OUTPUT_NODE = True
|
|
DESCRIPTION = """
|
|
Does nothing, used to trigger generic workflow output.
|
|
A way to get previews in the UI without saving anything to disk.
|
|
"""
|
|
|
|
def dummy(self, any_input):
|
|
return (any_input,)
|
|
|
|
class FlipSigmasAdjusted:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"sigmas": ("SIGMAS", ),
|
|
"divide_by_last_sigma": ("BOOLEAN", {"default": False}),
|
|
"divide_by": ("FLOAT", {"default": 1,"min": 1, "max": 255, "step": 0.01}),
|
|
"offset_by": ("INT", {"default": 1,"min": -100, "max": 100, "step": 1}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("SIGMAS", "STRING",)
|
|
RETURN_NAMES = ("SIGMAS", "sigmas_string",)
|
|
CATEGORY = "KJNodes/noise"
|
|
FUNCTION = "get_sigmas_adjusted"
|
|
|
|
def get_sigmas_adjusted(self, sigmas, divide_by_last_sigma, divide_by, offset_by):
|
|
|
|
sigmas = sigmas.flip(0)
|
|
if sigmas[0] == 0:
|
|
sigmas[0] = 0.0001
|
|
adjusted_sigmas = sigmas.clone()
|
|
#offset sigma
|
|
for i in range(1, len(sigmas)):
|
|
offset_index = i - offset_by
|
|
if 0 <= offset_index < len(sigmas):
|
|
adjusted_sigmas[i] = sigmas[offset_index]
|
|
else:
|
|
adjusted_sigmas[i] = 0.0001
|
|
if adjusted_sigmas[0] == 0:
|
|
adjusted_sigmas[0] = 0.0001
|
|
if divide_by_last_sigma:
|
|
adjusted_sigmas = adjusted_sigmas / adjusted_sigmas[-1]
|
|
|
|
sigma_np_array = adjusted_sigmas.numpy()
|
|
array_string = np.array2string(sigma_np_array, precision=2, separator=', ', threshold=np.inf)
|
|
adjusted_sigmas = adjusted_sigmas / divide_by
|
|
return (adjusted_sigmas, array_string,)
|
|
|
|
class CustomSigmas:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{
|
|
"sigmas_string" :("STRING", {"default": "14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029","multiline": True}),
|
|
"interpolate_to_steps": ("INT", {"default": 10,"min": 0, "max": 255, "step": 1}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("SIGMAS",)
|
|
RETURN_NAMES = ("SIGMAS",)
|
|
CATEGORY = "KJNodes/noise"
|
|
FUNCTION = "customsigmas"
|
|
DESCRIPTION = """
|
|
Creates a sigmas tensor from a string of comma separated values.
|
|
Examples:
|
|
|
|
Nvidia's optimized AYS 10 step schedule for SD 1.5:
|
|
14.615, 6.475, 3.861, 2.697, 1.886, 1.396, 0.963, 0.652, 0.399, 0.152, 0.029
|
|
SDXL:
|
|
14.615, 6.315, 3.771, 2.181, 1.342, 0.862, 0.555, 0.380, 0.234, 0.113, 0.029
|
|
SVD:
|
|
700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002
|
|
"""
|
|
def customsigmas(self, sigmas_string, interpolate_to_steps):
|
|
sigmas_list = sigmas_string.split(', ')
|
|
sigmas_float_list = [float(sigma) for sigma in sigmas_list]
|
|
sigmas_tensor = torch.FloatTensor(sigmas_float_list)
|
|
if len(sigmas_tensor) != interpolate_to_steps + 1:
|
|
sigmas_tensor = self.loglinear_interp(sigmas_tensor, interpolate_to_steps + 1)
|
|
sigmas_tensor[-1] = 0
|
|
return (sigmas_tensor.float(),)
|
|
|
|
def loglinear_interp(self, t_steps, num_steps):
|
|
"""
|
|
Performs log-linear interpolation of a given array of decreasing numbers.
|
|
"""
|
|
t_steps_np = t_steps.numpy()
|
|
|
|
xs = np.linspace(0, 1, len(t_steps_np))
|
|
ys = np.log(t_steps_np[::-1])
|
|
|
|
new_xs = np.linspace(0, 1, num_steps)
|
|
new_ys = np.interp(new_xs, xs, ys)
|
|
|
|
interped_ys = np.exp(new_ys)[::-1].copy()
|
|
interped_ys_tensor = torch.tensor(interped_ys)
|
|
return interped_ys_tensor
|
|
|
|
class StringToFloatList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{
|
|
"string" :("STRING", {"default": "1, 2, 3", "multiline": True}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("FLOAT",)
|
|
RETURN_NAMES = ("FLOAT",)
|
|
CATEGORY = "KJNodes/misc"
|
|
FUNCTION = "createlist"
|
|
|
|
def createlist(self, string):
|
|
float_list = [float(x.strip()) for x in string.split(',')]
|
|
return (float_list,)
|
|
|
|
|
|
class InjectNoiseToLatent:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"latents":("LATENT",),
|
|
"strength": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 200.0, "step": 0.0001}),
|
|
"noise": ("LATENT",),
|
|
"normalize": ("BOOLEAN", {"default": False}),
|
|
"average": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional":{
|
|
"mask": ("MASK", ),
|
|
"mix_randn_amount": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.001}),
|
|
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "injectnoise"
|
|
CATEGORY = "KJNodes/noise"
|
|
|
|
def injectnoise(self, latents, strength, noise, normalize, average, mix_randn_amount=0, seed=None, mask=None):
|
|
samples = latents["samples"].clone().cpu()
|
|
noise = noise["samples"].clone().cpu()
|
|
if samples.shape != samples.shape:
|
|
raise ValueError("InjectNoiseToLatent: Latent and noise must have the same shape")
|
|
if average:
|
|
noised = (samples + noise) / 2
|
|
else:
|
|
noised = samples + noise * strength
|
|
if normalize:
|
|
noised = noised / noised.std()
|
|
if mask is not None:
|
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(noised.shape[2], noised.shape[3]), mode="bilinear")
|
|
mask = mask.expand((-1,noised.shape[1],-1,-1))
|
|
if mask.shape[0] < noised.shape[0]:
|
|
mask = mask.repeat((noised.shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:noised.shape[0]]
|
|
noised = mask * noised + (1-mask) * samples
|
|
if mix_randn_amount > 0:
|
|
if seed is not None:
|
|
generator = torch.manual_seed(seed)
|
|
rand_noise = torch.randn(noised.size(), dtype=noised.dtype, layout=noised.layout, generator=generator, device="cpu")
|
|
noised = noised + (mix_randn_amount * rand_noise)
|
|
|
|
return ({"samples":noised},)
|
|
|
|
class SoundReactive:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"sound_level": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 99999, "step": 0.01}),
|
|
"start_range_hz": ("INT", {"default": 150, "min": 0, "max": 9999, "step": 1}),
|
|
"end_range_hz": ("INT", {"default": 2000, "min": 0, "max": 9999, "step": 1}),
|
|
"multiplier": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 99999, "step": 0.01}),
|
|
"smoothing_factor": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"normalize": ("BOOLEAN", {"default": False}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("FLOAT","INT",)
|
|
RETURN_NAMES =("sound_level", "sound_level_int",)
|
|
FUNCTION = "react"
|
|
CATEGORY = "KJNodes/audio"
|
|
DESCRIPTION = """
|
|
Reacts to the sound level of the input.
|
|
Uses your browsers sound input options and requires.
|
|
Meant to be used with realtime diffusion with autoqueue.
|
|
"""
|
|
|
|
def react(self, sound_level, start_range_hz, end_range_hz, smoothing_factor, multiplier, normalize):
|
|
|
|
sound_level *= multiplier
|
|
|
|
if normalize:
|
|
sound_level /= 255
|
|
|
|
sound_level_int = int(sound_level)
|
|
return (sound_level, sound_level_int, )
|
|
|
|
class GenerateNoise:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
|
|
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
|
|
"multiplier": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 4096, "step": 0.01}),
|
|
"constant_batch_noise": ("BOOLEAN", {"default": False}),
|
|
"normalize": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"model": ("MODEL", ),
|
|
"sigmas": ("SIGMAS", ),
|
|
"latent_channels": (['4', '16', ],),
|
|
"shape": (["BCHW", "BCTHW","BTCHW",],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "generatenoise"
|
|
CATEGORY = "KJNodes/noise"
|
|
DESCRIPTION = """
|
|
Generates noise for injection or to be used as empty latents on samplers with add_noise off.
|
|
"""
|
|
|
|
def generatenoise(self, batch_size, width, height, seed, multiplier, constant_batch_noise, normalize, sigmas=None, model=None, latent_channels=4, shape="BCHW"):
|
|
|
|
generator = torch.manual_seed(seed)
|
|
if shape == "BCHW":
|
|
noise = torch.randn([batch_size, int(latent_channels), height // 8, width // 8], dtype=torch.float32, layout=torch.strided, generator=generator, device="cpu")
|
|
elif shape == "BCTHW":
|
|
noise = torch.randn([1, int(latent_channels), batch_size,height // 8, width // 8], dtype=torch.float32, layout=torch.strided, generator=generator, device="cpu")
|
|
elif shape == "BTCHW":
|
|
noise = torch.randn([1, batch_size, int(latent_channels), height // 8, width // 8], dtype=torch.float32, layout=torch.strided, generator=generator, device="cpu")
|
|
if sigmas is not None:
|
|
sigma = sigmas[0] - sigmas[-1]
|
|
sigma /= model.model.latent_format.scale_factor
|
|
noise *= sigma
|
|
|
|
noise *=multiplier
|
|
|
|
if normalize:
|
|
noise = noise / noise.std()
|
|
if constant_batch_noise:
|
|
noise = noise[0].repeat(batch_size, 1, 1, 1)
|
|
|
|
|
|
return ({"samples":noise}, )
|
|
|
|
def camera_embeddings(elevation, azimuth):
|
|
elevation = torch.as_tensor([elevation])
|
|
azimuth = torch.as_tensor([azimuth])
|
|
embeddings = torch.stack(
|
|
[
|
|
torch.deg2rad(
|
|
(90 - elevation) - (90)
|
|
), # Zero123 polar is 90-elevation
|
|
torch.sin(torch.deg2rad(azimuth)),
|
|
torch.cos(torch.deg2rad(azimuth)),
|
|
torch.deg2rad(
|
|
90 - torch.full_like(elevation, 0)
|
|
),
|
|
], dim=-1).unsqueeze(1)
|
|
|
|
return embeddings
|
|
|
|
def interpolate_angle(start, end, fraction):
|
|
# Calculate the difference in angles and adjust for wraparound if necessary
|
|
diff = (end - start + 540) % 360 - 180
|
|
# Apply fraction to the difference
|
|
interpolated = start + fraction * diff
|
|
# Normalize the result to be within the range of -180 to 180
|
|
return (interpolated + 180) % 360 - 180
|
|
|
|
|
|
class StableZero123_BatchSchedule:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip_vision": ("CLIP_VISION",),
|
|
"init_image": ("IMAGE",),
|
|
"vae": ("VAE",),
|
|
"width": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 256, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
|
|
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n7:(1.0),\n15:(0.0)\n", "multiline": True}),
|
|
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n7:(0.0),\n15:(0.0)\n", "multiline": True}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
FUNCTION = "encode"
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation):
|
|
output = clip_vision.encode_image(init_image)
|
|
pooled = output.image_embeds.unsqueeze(0)
|
|
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
|
encode_pixels = pixels[:,:,:,:3]
|
|
t = vae.encode(encode_pixels)
|
|
|
|
def ease_in(t):
|
|
return t * t
|
|
def ease_out(t):
|
|
return 1 - (1 - t) * (1 - t)
|
|
def ease_in_out(t):
|
|
return 3 * t * t - 2 * t * t * t
|
|
|
|
# Parse the azimuth input string into a list of tuples
|
|
azimuth_points = []
|
|
azimuth_points_string = azimuth_points_string.rstrip(',\n')
|
|
for point_str in azimuth_points_string.split(','):
|
|
frame_str, azimuth_str = point_str.split(':')
|
|
frame = int(frame_str.strip())
|
|
azimuth = float(azimuth_str.strip()[1:-1])
|
|
azimuth_points.append((frame, azimuth))
|
|
# Sort the points by frame number
|
|
azimuth_points.sort(key=lambda x: x[0])
|
|
|
|
# Parse the elevation input string into a list of tuples
|
|
elevation_points = []
|
|
elevation_points_string = elevation_points_string.rstrip(',\n')
|
|
for point_str in elevation_points_string.split(','):
|
|
frame_str, elevation_str = point_str.split(':')
|
|
frame = int(frame_str.strip())
|
|
elevation_val = float(elevation_str.strip()[1:-1])
|
|
elevation_points.append((frame, elevation_val))
|
|
# Sort the points by frame number
|
|
elevation_points.sort(key=lambda x: x[0])
|
|
|
|
# Index of the next point to interpolate towards
|
|
next_point = 1
|
|
next_elevation_point = 1
|
|
|
|
positive_cond_out = []
|
|
positive_pooled_out = []
|
|
negative_cond_out = []
|
|
negative_pooled_out = []
|
|
|
|
#azimuth interpolation
|
|
for i in range(batch_size):
|
|
# Find the interpolated azimuth for the current frame
|
|
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]:
|
|
next_point += 1
|
|
# If next_point is equal to the length of points, we've gone past the last point
|
|
if next_point == len(azimuth_points):
|
|
next_point -= 1 # Set next_point to the last index of points
|
|
prev_point = max(next_point - 1, 0) # Ensure prev_point is not less than 0
|
|
|
|
# Calculate fraction
|
|
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]: # Prevent division by zero
|
|
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0])
|
|
if interpolation == "ease_in":
|
|
fraction = ease_in(fraction)
|
|
elif interpolation == "ease_out":
|
|
fraction = ease_out(fraction)
|
|
elif interpolation == "ease_in_out":
|
|
fraction = ease_in_out(fraction)
|
|
|
|
# Use the new interpolate_angle function
|
|
interpolated_azimuth = interpolate_angle(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction)
|
|
else:
|
|
interpolated_azimuth = azimuth_points[prev_point][1]
|
|
# Interpolate the elevation
|
|
next_elevation_point = 1
|
|
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]:
|
|
next_elevation_point += 1
|
|
if next_elevation_point == len(elevation_points):
|
|
next_elevation_point -= 1
|
|
prev_elevation_point = max(next_elevation_point - 1, 0)
|
|
|
|
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]:
|
|
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0])
|
|
if interpolation == "ease_in":
|
|
fraction = ease_in(fraction)
|
|
elif interpolation == "ease_out":
|
|
fraction = ease_out(fraction)
|
|
elif interpolation == "ease_in_out":
|
|
fraction = ease_in_out(fraction)
|
|
|
|
interpolated_elevation = interpolate_angle(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction)
|
|
else:
|
|
interpolated_elevation = elevation_points[prev_elevation_point][1]
|
|
|
|
cam_embeds = camera_embeddings(interpolated_elevation, interpolated_azimuth)
|
|
cond = torch.cat([pooled, cam_embeds.repeat((pooled.shape[0], 1, 1))], dim=-1)
|
|
|
|
positive_pooled_out.append(t)
|
|
positive_cond_out.append(cond)
|
|
negative_pooled_out.append(torch.zeros_like(t))
|
|
negative_cond_out.append(torch.zeros_like(pooled))
|
|
|
|
# Concatenate the conditions and pooled outputs
|
|
final_positive_cond = torch.cat(positive_cond_out, dim=0)
|
|
final_positive_pooled = torch.cat(positive_pooled_out, dim=0)
|
|
final_negative_cond = torch.cat(negative_cond_out, dim=0)
|
|
final_negative_pooled = torch.cat(negative_pooled_out, dim=0)
|
|
|
|
# Structure the final output
|
|
final_positive = [[final_positive_cond, {"concat_latent_image": final_positive_pooled}]]
|
|
final_negative = [[final_negative_cond, {"concat_latent_image": final_negative_pooled}]]
|
|
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
|
return (final_positive, final_negative, {"samples": latent})
|
|
|
|
def linear_interpolate(start, end, fraction):
|
|
return start + (end - start) * fraction
|
|
|
|
class SV3D_BatchSchedule:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip_vision": ("CLIP_VISION",),
|
|
"init_image": ("IMAGE",),
|
|
"vae": ("VAE",),
|
|
"width": ("INT", {"default": 576, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 576, "min": 16, "max": MAX_RESOLUTION, "step": 8}),
|
|
"batch_size": ("INT", {"default": 21, "min": 1, "max": 4096}),
|
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
|
|
"azimuth_points_string": ("STRING", {"default": "0:(0.0),\n9:(180.0),\n20:(360.0)\n", "multiline": True}),
|
|
"elevation_points_string": ("STRING", {"default": "0:(0.0),\n9:(0.0),\n20:(0.0)\n", "multiline": True}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("CONDITIONING", "CONDITIONING", "LATENT")
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
FUNCTION = "encode"
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRIPTION = """
|
|
Allow scheduling of the azimuth and elevation conditions for SV3D.
|
|
Note that SV3D is still a video model and the schedule needs to always go forward
|
|
https://huggingface.co/stabilityai/sv3d
|
|
"""
|
|
|
|
def encode(self, clip_vision, init_image, vae, width, height, batch_size, azimuth_points_string, elevation_points_string, interpolation):
|
|
output = clip_vision.encode_image(init_image)
|
|
pooled = output.image_embeds.unsqueeze(0)
|
|
pixels = common_upscale(init_image.movedim(-1,1), width, height, "bilinear", "center").movedim(1,-1)
|
|
encode_pixels = pixels[:,:,:,:3]
|
|
t = vae.encode(encode_pixels)
|
|
|
|
def ease_in(t):
|
|
return t * t
|
|
def ease_out(t):
|
|
return 1 - (1 - t) * (1 - t)
|
|
def ease_in_out(t):
|
|
return 3 * t * t - 2 * t * t * t
|
|
|
|
# Parse the azimuth input string into a list of tuples
|
|
azimuth_points = []
|
|
azimuth_points_string = azimuth_points_string.rstrip(',\n')
|
|
for point_str in azimuth_points_string.split(','):
|
|
frame_str, azimuth_str = point_str.split(':')
|
|
frame = int(frame_str.strip())
|
|
azimuth = float(azimuth_str.strip()[1:-1])
|
|
azimuth_points.append((frame, azimuth))
|
|
# Sort the points by frame number
|
|
azimuth_points.sort(key=lambda x: x[0])
|
|
|
|
# Parse the elevation input string into a list of tuples
|
|
elevation_points = []
|
|
elevation_points_string = elevation_points_string.rstrip(',\n')
|
|
for point_str in elevation_points_string.split(','):
|
|
frame_str, elevation_str = point_str.split(':')
|
|
frame = int(frame_str.strip())
|
|
elevation_val = float(elevation_str.strip()[1:-1])
|
|
elevation_points.append((frame, elevation_val))
|
|
# Sort the points by frame number
|
|
elevation_points.sort(key=lambda x: x[0])
|
|
|
|
# Index of the next point to interpolate towards
|
|
next_point = 1
|
|
next_elevation_point = 1
|
|
elevations = []
|
|
azimuths = []
|
|
# For azimuth interpolation
|
|
for i in range(batch_size):
|
|
# Find the interpolated azimuth for the current frame
|
|
while next_point < len(azimuth_points) and i >= azimuth_points[next_point][0]:
|
|
next_point += 1
|
|
if next_point == len(azimuth_points):
|
|
next_point -= 1
|
|
prev_point = max(next_point - 1, 0)
|
|
|
|
if azimuth_points[next_point][0] != azimuth_points[prev_point][0]:
|
|
fraction = (i - azimuth_points[prev_point][0]) / (azimuth_points[next_point][0] - azimuth_points[prev_point][0])
|
|
# Apply the ease function to the fraction
|
|
if interpolation == "ease_in":
|
|
fraction = ease_in(fraction)
|
|
elif interpolation == "ease_out":
|
|
fraction = ease_out(fraction)
|
|
elif interpolation == "ease_in_out":
|
|
fraction = ease_in_out(fraction)
|
|
|
|
interpolated_azimuth = linear_interpolate(azimuth_points[prev_point][1], azimuth_points[next_point][1], fraction)
|
|
else:
|
|
interpolated_azimuth = azimuth_points[prev_point][1]
|
|
|
|
# Interpolate the elevation
|
|
next_elevation_point = 1
|
|
while next_elevation_point < len(elevation_points) and i >= elevation_points[next_elevation_point][0]:
|
|
next_elevation_point += 1
|
|
if next_elevation_point == len(elevation_points):
|
|
next_elevation_point -= 1
|
|
prev_elevation_point = max(next_elevation_point - 1, 0)
|
|
|
|
if elevation_points[next_elevation_point][0] != elevation_points[prev_elevation_point][0]:
|
|
fraction = (i - elevation_points[prev_elevation_point][0]) / (elevation_points[next_elevation_point][0] - elevation_points[prev_elevation_point][0])
|
|
# Apply the ease function to the fraction
|
|
if interpolation == "ease_in":
|
|
fraction = ease_in(fraction)
|
|
elif interpolation == "ease_out":
|
|
fraction = ease_out(fraction)
|
|
elif interpolation == "ease_in_out":
|
|
fraction = ease_in_out(fraction)
|
|
|
|
interpolated_elevation = linear_interpolate(elevation_points[prev_elevation_point][1], elevation_points[next_elevation_point][1], fraction)
|
|
else:
|
|
interpolated_elevation = elevation_points[prev_elevation_point][1]
|
|
|
|
azimuths.append(interpolated_azimuth)
|
|
elevations.append(interpolated_elevation)
|
|
|
|
#print("azimuths", azimuths)
|
|
#print("elevations", elevations)
|
|
|
|
# Structure the final output
|
|
final_positive = [[pooled, {"concat_latent_image": t, "elevation": elevations, "azimuth": azimuths}]]
|
|
final_negative = [[torch.zeros_like(pooled), {"concat_latent_image": torch.zeros_like(t),"elevation": elevations, "azimuth": azimuths}]]
|
|
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8])
|
|
return (final_positive, final_negative, {"samples": latent})
|
|
|
|
class LoadResAdapterNormalization:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"model": ("MODEL",),
|
|
"resadapter_path": (folder_paths.get_filename_list("checkpoints"), )
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "load_res_adapter"
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def load_res_adapter(self, model, resadapter_path):
|
|
print("ResAdapter: Checking ResAdapter path")
|
|
resadapter_full_path = folder_paths.get_full_path("checkpoints", resadapter_path)
|
|
if not os.path.exists(resadapter_full_path):
|
|
raise Exception("Invalid model path")
|
|
else:
|
|
print("ResAdapter: Loading ResAdapter normalization weights")
|
|
from comfy.utils import load_torch_file
|
|
prefix_to_remove = 'diffusion_model.'
|
|
model_clone = model.clone()
|
|
norm_state_dict = load_torch_file(resadapter_full_path)
|
|
new_values = {key[len(prefix_to_remove):]: value for key, value in norm_state_dict.items() if key.startswith(prefix_to_remove)}
|
|
print("ResAdapter: Attempting to add patches with ResAdapter weights")
|
|
try:
|
|
for key in model.model.diffusion_model.state_dict().keys():
|
|
if key in new_values:
|
|
original_tensor = model.model.diffusion_model.state_dict()[key]
|
|
new_tensor = new_values[key].to(model.model.diffusion_model.dtype)
|
|
if original_tensor.shape == new_tensor.shape:
|
|
model_clone.add_object_patch(f"diffusion_model.{key}.data", new_tensor)
|
|
else:
|
|
print("ResAdapter: No match for key: ",key)
|
|
except:
|
|
raise Exception("Could not patch model, this way of patching was added to ComfyUI on March 3rd 2024, is your ComfyUI up to date?")
|
|
print("ResAdapter: Added resnet normalization patches")
|
|
return (model_clone, )
|
|
|
|
class Superprompt:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"instruction_prompt": ("STRING", {"default": 'Expand the following prompt to add more detail', "multiline": True}),
|
|
"prompt": ("STRING", {"default": '', "multiline": True, "forceInput": True}),
|
|
"max_new_tokens": ("INT", {"default": 128, "min": 1, "max": 4096, "step": 1}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "process"
|
|
CATEGORY = "KJNodes/text"
|
|
DESCRIPTION = """
|
|
# SuperPrompt
|
|
A T5 model fine-tuned on the SuperPrompt dataset for
|
|
upsampling text prompts to more detailed descriptions.
|
|
Meant to be used as a pre-generation step for text-to-image
|
|
models that benefit from more detailed prompts.
|
|
https://huggingface.co/roborovski/superprompt-v1
|
|
"""
|
|
|
|
def process(self, instruction_prompt, prompt, max_new_tokens):
|
|
device = model_management.get_torch_device()
|
|
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
|
checkpoint_path = os.path.join(script_directory, "models","superprompt-v1")
|
|
if not os.path.exists(checkpoint_path):
|
|
print(f"Downloading model to: {checkpoint_path}")
|
|
from huggingface_hub import snapshot_download
|
|
snapshot_download(repo_id="roborovski/superprompt-v1",
|
|
local_dir=checkpoint_path,
|
|
local_dir_use_symlinks=False)
|
|
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small", legacy=False)
|
|
|
|
model = T5ForConditionalGeneration.from_pretrained(checkpoint_path, device_map=device)
|
|
model.to(device)
|
|
input_text = instruction_prompt + ": " + prompt
|
|
|
|
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
|
|
outputs = model.generate(input_ids, max_new_tokens=max_new_tokens)
|
|
out = (tokenizer.decode(outputs[0]))
|
|
out = out.replace('<pad>', '')
|
|
out = out.replace('</s>', '')
|
|
|
|
return (out, )
|
|
|
|
|
|
class CameraPoseVisualizer:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"pose_file_path": ("STRING", {"default": '', "multiline": False}),
|
|
"base_xval": ("FLOAT", {"default": 0.2,"min": 0, "max": 100, "step": 0.01}),
|
|
"zval": ("FLOAT", {"default": 0.3,"min": 0, "max": 100, "step": 0.01}),
|
|
"scale": ("FLOAT", {"default": 1.0,"min": 0.01, "max": 10.0, "step": 0.01}),
|
|
"use_exact_fx": ("BOOLEAN", {"default": False}),
|
|
"relative_c2w": ("BOOLEAN", {"default": True}),
|
|
"use_viewer": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"cameractrl_poses": ("CAMERACTRL_POSES", {"default": None}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "plot"
|
|
CATEGORY = "KJNodes/misc"
|
|
DESCRIPTION = """
|
|
Visualizes the camera poses, from Animatediff-Evolved CameraCtrl Pose
|
|
or a .txt file with RealEstate camera intrinsics and coordinates, in a 3D plot.
|
|
"""
|
|
|
|
def plot(self, pose_file_path, scale, base_xval, zval, use_exact_fx, relative_c2w, use_viewer, cameractrl_poses=None):
|
|
import matplotlib as mpl
|
|
import matplotlib.pyplot as plt
|
|
from torchvision.transforms import ToTensor
|
|
|
|
x_min = -2.0 * scale
|
|
x_max = 2.0 * scale
|
|
y_min = -2.0 * scale
|
|
y_max = 2.0 * scale
|
|
z_min = -2.0 * scale
|
|
z_max = 2.0 * scale
|
|
plt.rcParams['text.color'] = '#999999'
|
|
self.fig = plt.figure(figsize=(18, 7))
|
|
self.fig.patch.set_facecolor('#353535')
|
|
self.ax = self.fig.add_subplot(projection='3d')
|
|
self.ax.set_facecolor('#353535') # Set the background color here
|
|
self.ax.grid(color='#999999', linestyle='-', linewidth=0.5)
|
|
self.plotly_data = None # plotly data traces
|
|
self.ax.set_aspect("auto")
|
|
self.ax.set_xlim(x_min, x_max)
|
|
self.ax.set_ylim(y_min, y_max)
|
|
self.ax.set_zlim(z_min, z_max)
|
|
self.ax.set_xlabel('x', color='#999999')
|
|
self.ax.set_ylabel('y', color='#999999')
|
|
self.ax.set_zlabel('z', color='#999999')
|
|
for text in self.ax.get_xticklabels() + self.ax.get_yticklabels() + self.ax.get_zticklabels():
|
|
text.set_color('#999999')
|
|
print('initialize camera pose visualizer')
|
|
|
|
if pose_file_path != "":
|
|
with open(pose_file_path, 'r') as f:
|
|
poses = f.readlines()
|
|
w2cs = [np.asarray([float(p) for p in pose.strip().split(' ')[7:]]).reshape(3, 4) for pose in poses[1:]]
|
|
fxs = [float(pose.strip().split(' ')[1]) for pose in poses[1:]]
|
|
#print(poses)
|
|
elif cameractrl_poses is not None:
|
|
poses = cameractrl_poses
|
|
w2cs = [np.array(pose[7:]).reshape(3, 4) for pose in cameractrl_poses]
|
|
fxs = [pose[1] for pose in cameractrl_poses]
|
|
else:
|
|
raise ValueError("Please provide either pose_file_path or cameractrl_poses")
|
|
|
|
total_frames = len(w2cs)
|
|
transform_matrix = np.asarray([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]).reshape(4, 4)
|
|
last_row = np.zeros((1, 4))
|
|
last_row[0, -1] = 1.0
|
|
|
|
w2cs = [np.concatenate((w2c, last_row), axis=0) for w2c in w2cs]
|
|
c2ws = self.get_c2w(w2cs, transform_matrix, relative_c2w)
|
|
|
|
for frame_idx, c2w in enumerate(c2ws):
|
|
self.extrinsic2pyramid(c2w, frame_idx / total_frames, hw_ratio=1/1, base_xval=base_xval,
|
|
zval=(fxs[frame_idx] if use_exact_fx else zval))
|
|
|
|
# Create the colorbar
|
|
cmap = mpl.cm.rainbow
|
|
norm = mpl.colors.Normalize(vmin=0, vmax=total_frames)
|
|
colorbar = self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), ax=self.ax, orientation='vertical')
|
|
|
|
# Change the colorbar label
|
|
colorbar.set_label('Frame', color='#999999') # Change the label and its color
|
|
|
|
# Change the tick colors
|
|
colorbar.ax.yaxis.set_tick_params(colors='#999999') # Change the tick color
|
|
|
|
# Change the tick frequency
|
|
# Assuming you want to set the ticks at every 10th frame
|
|
ticks = np.arange(0, total_frames, 10)
|
|
colorbar.ax.yaxis.set_ticks(ticks)
|
|
|
|
plt.title('')
|
|
plt.draw()
|
|
buf = io.BytesIO()
|
|
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
|
buf.seek(0)
|
|
img = Image.open(buf)
|
|
tensor_img = ToTensor()(img)
|
|
buf.close()
|
|
tensor_img = tensor_img.permute(1, 2, 0).unsqueeze(0)
|
|
if use_viewer:
|
|
time.sleep(1)
|
|
plt.show()
|
|
return (tensor_img,)
|
|
|
|
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=1/1, base_xval=1, zval=3):
|
|
import matplotlib.pyplot as plt
|
|
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
|
|
vertex_std = np.array([[0, 0, 0, 1],
|
|
[base_xval, -base_xval * hw_ratio, zval, 1],
|
|
[base_xval, base_xval * hw_ratio, zval, 1],
|
|
[-base_xval, base_xval * hw_ratio, zval, 1],
|
|
[-base_xval, -base_xval * hw_ratio, zval, 1]])
|
|
vertex_transformed = vertex_std @ extrinsic.T
|
|
meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]],
|
|
[vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]],
|
|
[vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]],
|
|
[vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]],
|
|
[vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]]
|
|
|
|
color = color_map if isinstance(color_map, str) else plt.cm.rainbow(color_map)
|
|
|
|
self.ax.add_collection3d(
|
|
Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.25))
|
|
|
|
def customize_legend(self, list_label):
|
|
from matplotlib.patches import Patch
|
|
import matplotlib.pyplot as plt
|
|
list_handle = []
|
|
for idx, label in enumerate(list_label):
|
|
color = plt.cm.rainbow(idx / len(list_label))
|
|
patch = Patch(color=color, label=label)
|
|
list_handle.append(patch)
|
|
plt.legend(loc='right', bbox_to_anchor=(1.8, 0.5), handles=list_handle)
|
|
|
|
def get_c2w(self, w2cs, transform_matrix, relative_c2w):
|
|
if relative_c2w:
|
|
target_cam_c2w = np.array([
|
|
[1, 0, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, 0, 1, 0],
|
|
[0, 0, 0, 1]
|
|
])
|
|
abs2rel = target_cam_c2w @ w2cs[0]
|
|
ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]]
|
|
else:
|
|
ret_poses = [np.linalg.inv(w2c) for w2c in w2cs]
|
|
ret_poses = [transform_matrix @ x for x in ret_poses]
|
|
return np.array(ret_poses, dtype=np.float32)
|
|
|
|
|
|
|
|
class CheckpointPerturbWeights:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"joint_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
|
|
"final_layer": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
|
|
"rest_of_the_blocks": ("FLOAT", {"default": 0.02, "min": 0.001, "max": 10.0, "step": 0.001}),
|
|
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "mod"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def mod(self, seed, model, joint_blocks, final_layer, rest_of_the_blocks):
|
|
import copy
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
device = model_management.get_torch_device()
|
|
model_copy = copy.deepcopy(model)
|
|
model_copy.model.to(device)
|
|
keys = model_copy.model.diffusion_model.state_dict().keys()
|
|
|
|
dict = {}
|
|
for key in keys:
|
|
dict[key] = model_copy.model.diffusion_model.state_dict()[key]
|
|
|
|
pbar = ProgressBar(len(keys))
|
|
for k in keys:
|
|
v = dict[k]
|
|
print(f'{k}: {v.std()}')
|
|
if k.startswith('joint_blocks'):
|
|
multiplier = joint_blocks
|
|
elif k.startswith('final_layer'):
|
|
multiplier = final_layer
|
|
else:
|
|
multiplier = rest_of_the_blocks
|
|
dict[k] += torch.normal(torch.zeros_like(v) * v.mean(), torch.ones_like(v) * v.std() * multiplier).to(device)
|
|
pbar.update(1)
|
|
model_copy.model.diffusion_model.load_state_dict(dict)
|
|
return model_copy,
|
|
|
|
class DifferentialDiffusionAdvanced():
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL", ),
|
|
"samples": ("LATENT",),
|
|
"mask": ("MASK",),
|
|
"multiplier": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL", "LATENT")
|
|
FUNCTION = "apply"
|
|
CATEGORY = "_for_testing"
|
|
INIT = False
|
|
|
|
def apply(self, model, samples, mask, multiplier):
|
|
self.multiplier = multiplier
|
|
model = model.clone()
|
|
model.set_model_denoise_mask_function(self.forward)
|
|
s = samples.copy()
|
|
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
|
|
return (model, s)
|
|
|
|
def forward(self, sigma: torch.Tensor, denoise_mask: torch.Tensor, extra_options: dict):
|
|
model = extra_options["model"]
|
|
step_sigmas = extra_options["sigmas"]
|
|
sigma_to = model.inner_model.model_sampling.sigma_min
|
|
if step_sigmas[-1] > sigma_to:
|
|
sigma_to = step_sigmas[-1]
|
|
sigma_from = step_sigmas[0]
|
|
|
|
ts_from = model.inner_model.model_sampling.timestep(sigma_from)
|
|
ts_to = model.inner_model.model_sampling.timestep(sigma_to)
|
|
current_ts = model.inner_model.model_sampling.timestep(sigma[0])
|
|
|
|
threshold = (current_ts - ts_to) / (ts_from - ts_to) / self.multiplier
|
|
|
|
return (denoise_mask >= threshold).to(denoise_mask.dtype)
|
|
|
|
class FluxBlockLoraSelect:
|
|
def __init__(self):
|
|
self.loaded_lora = None
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
arg_dict = {}
|
|
argument = ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.01})
|
|
|
|
for i in range(19):
|
|
arg_dict["double_blocks.{}.".format(i)] = argument
|
|
|
|
for i in range(38):
|
|
arg_dict["single_blocks.{}.".format(i)] = argument
|
|
|
|
return {"required": arg_dict}
|
|
|
|
RETURN_TYPES = ("SELECTEDDITBLOCKS", )
|
|
RETURN_NAMES = ("blocks", )
|
|
OUTPUT_TOOLTIPS = ("The modified diffusion model.",)
|
|
FUNCTION = "load_lora"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRIPTION = "Select individual block alpha values, value of 0 removes the block altogether"
|
|
|
|
def load_lora(self, **kwargs):
|
|
return (kwargs,)
|
|
|
|
class HunyuanVideoBlockLoraSelect:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
arg_dict = {}
|
|
argument = ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.01})
|
|
|
|
for i in range(20):
|
|
arg_dict["double_blocks.{}.".format(i)] = argument
|
|
|
|
for i in range(40):
|
|
arg_dict["single_blocks.{}.".format(i)] = argument
|
|
|
|
return {"required": arg_dict}
|
|
|
|
RETURN_TYPES = ("SELECTEDDITBLOCKS", )
|
|
RETURN_NAMES = ("blocks", )
|
|
OUTPUT_TOOLTIPS = ("The modified diffusion model.",)
|
|
FUNCTION = "load_lora"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRIPTION = "Select individual block alpha values, value of 0 removes the block altogether"
|
|
|
|
def load_lora(self, **kwargs):
|
|
return (kwargs,)
|
|
|
|
class Wan21BlockLoraSelect:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
arg_dict = {}
|
|
argument = ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.01})
|
|
|
|
for i in range(40):
|
|
arg_dict["blocks.{}.".format(i)] = argument
|
|
|
|
return {"required": arg_dict}
|
|
|
|
RETURN_TYPES = ("SELECTEDDITBLOCKS", )
|
|
RETURN_NAMES = ("blocks", )
|
|
OUTPUT_TOOLTIPS = ("The modified diffusion model.",)
|
|
FUNCTION = "load_lora"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRIPTION = "Select individual block alpha values, value of 0 removes the block altogether"
|
|
|
|
def load_lora(self, **kwargs):
|
|
return (kwargs,)
|
|
|
|
class DiTBlockLoraLoader:
|
|
def __init__(self):
|
|
self.loaded_lora = None
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
|
|
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}),
|
|
|
|
},
|
|
"optional": {
|
|
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
|
|
"opt_lora_path": ("STRING", {"forceInput": True, "tooltip": "Absolute path of the LoRA."}),
|
|
"blocks": ("SELECTEDDITBLOCKS",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL", "STRING", )
|
|
RETURN_NAMES = ("model", "rank", )
|
|
OUTPUT_TOOLTIPS = ("The modified diffusion model.", "possible rank of the LoRA.")
|
|
FUNCTION = "load_lora"
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def load_lora(self, model, strength_model, lora_name=None, opt_lora_path=None, blocks=None):
|
|
|
|
import comfy.lora
|
|
|
|
if opt_lora_path:
|
|
lora_path = opt_lora_path
|
|
else:
|
|
lora_path = folder_paths.get_full_path("loras", lora_name)
|
|
|
|
lora = None
|
|
if self.loaded_lora is not None:
|
|
if self.loaded_lora[0] == lora_path:
|
|
lora = self.loaded_lora[1]
|
|
else:
|
|
self.loaded_lora = None
|
|
|
|
if lora is None:
|
|
lora = load_torch_file(lora_path, safe_load=True)
|
|
self.loaded_lora = (lora_path, lora)
|
|
|
|
# Find the first key that ends with "weight"
|
|
rank = "unknown"
|
|
weight_key = next((key for key in lora.keys() if key.endswith('weight')), None)
|
|
# Print the shape of the value corresponding to the key
|
|
if weight_key:
|
|
print(f"Shape of the first 'weight' key ({weight_key}): {lora[weight_key].shape}")
|
|
rank = str(lora[weight_key].shape[0])
|
|
else:
|
|
print("No key ending with 'weight' found.")
|
|
rank = "Couldn't find rank"
|
|
self.loaded_lora = (lora_path, lora)
|
|
|
|
key_map = {}
|
|
if model is not None:
|
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
|
|
|
loaded = comfy.lora.load_lora(lora, key_map)
|
|
|
|
if blocks is not None:
|
|
keys_to_delete = []
|
|
|
|
for block in blocks:
|
|
for key in list(loaded.keys()):
|
|
match = False
|
|
if isinstance(key, str) and block in key:
|
|
match = True
|
|
elif isinstance(key, tuple):
|
|
for k in key:
|
|
if block in k:
|
|
match = True
|
|
break
|
|
|
|
if match:
|
|
ratio = blocks[block]
|
|
if ratio == 0:
|
|
keys_to_delete.append(key)
|
|
else:
|
|
# Only modify LoRA adapters, skip diff tuples
|
|
value = loaded[key]
|
|
if hasattr(value, 'weights'):
|
|
print(f"Modifying LoRA adapter for key: {key}")
|
|
weights_list = list(value.weights)
|
|
weights_list[2] = ratio
|
|
loaded[key].weights = tuple(weights_list)
|
|
else:
|
|
print(f"Skipping non-LoRA entry for key: {key}")
|
|
|
|
for key in keys_to_delete:
|
|
del loaded[key]
|
|
|
|
print("loading lora keys:")
|
|
for key, value in loaded.items():
|
|
if hasattr(value, 'weights'):
|
|
print(f"Key: {key}, Alpha: {value.weights[2]}")
|
|
else:
|
|
print(f"Key: {key}, Type: {type(value)}")
|
|
|
|
if model is not None:
|
|
new_modelpatcher = model.clone()
|
|
k = new_modelpatcher.add_patches(loaded, strength_model)
|
|
|
|
k = set(k)
|
|
for x in loaded:
|
|
if (x not in k):
|
|
print("NOT LOADED {}".format(x))
|
|
|
|
return (new_modelpatcher, rank)
|
|
|
|
class CustomControlNetWeightsFluxFromList:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"list_of_floats": ("FLOAT", {"forceInput": True}, ),
|
|
},
|
|
"optional": {
|
|
"uncond_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}, ),
|
|
"cn_extras": ("CN_WEIGHTS_EXTRAS",),
|
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONTROL_NET_WEIGHTS", "TIMESTEP_KEYFRAME",)
|
|
RETURN_NAMES = ("CN_WEIGHTS", "TK_SHORTCUT")
|
|
FUNCTION = "load_weights"
|
|
DESCRIPTION = "Creates controlnet weights from a list of floats for Advanced-ControlNet"
|
|
|
|
CATEGORY = "KJNodes/controlnet"
|
|
|
|
def load_weights(self, list_of_floats: list[float],
|
|
uncond_multiplier: float=1.0, cn_extras: dict[str]={}):
|
|
|
|
adv_control = importlib.import_module("ComfyUI-Advanced-ControlNet.adv_control")
|
|
ControlWeights = adv_control.utils.ControlWeights
|
|
TimestepKeyframeGroup = adv_control.utils.TimestepKeyframeGroup
|
|
TimestepKeyframe = adv_control.utils.TimestepKeyframe
|
|
|
|
weights = ControlWeights.controlnet(weights_input=list_of_floats, uncond_multiplier=uncond_multiplier, extras=cn_extras)
|
|
print(weights.weights_input)
|
|
return (weights, TimestepKeyframeGroup.default(TimestepKeyframe(control_weights=weights)))
|
|
|
|
SHAKKERLABS_UNION_CONTROLNET_TYPES = {
|
|
"canny": 0,
|
|
"tile": 1,
|
|
"depth": 2,
|
|
"blur": 3,
|
|
"pose": 4,
|
|
"gray": 5,
|
|
"low quality": 6,
|
|
}
|
|
|
|
class SetShakkerLabsUnionControlNetType:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"control_net": ("CONTROL_NET", ),
|
|
"type": (["auto"] + list(SHAKKERLABS_UNION_CONTROLNET_TYPES.keys()),)
|
|
}}
|
|
|
|
CATEGORY = "conditioning/controlnet"
|
|
RETURN_TYPES = ("CONTROL_NET",)
|
|
|
|
FUNCTION = "set_controlnet_type"
|
|
|
|
def set_controlnet_type(self, control_net, type):
|
|
control_net = control_net.copy()
|
|
type_number = SHAKKERLABS_UNION_CONTROLNET_TYPES.get(type, -1)
|
|
if type_number >= 0:
|
|
control_net.set_extra_arg("control_type", [type_number])
|
|
else:
|
|
control_net.set_extra_arg("control_type", [])
|
|
|
|
return (control_net,)
|
|
|
|
class ModelSaveKJ:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"filename_prefix": ("STRING", {"default": "diffusion_models/ComfyUI"}),
|
|
"model_key_prefix": ("STRING", {"default": "model.diffusion_model."}),
|
|
},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},}
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save"
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "advanced/model_merging"
|
|
|
|
def save(self, model, filename_prefix, model_key_prefix, prompt=None, extra_pnginfo=None):
|
|
from comfy.utils import save_torch_file
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
|
|
|
output_checkpoint = f"{filename}_{counter:05}_.safetensors"
|
|
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
|
|
|
|
load_models = [model]
|
|
|
|
model_management.load_models_gpu(load_models, force_patch_weights=True)
|
|
default_prefix = "model.diffusion_model."
|
|
|
|
sd = model.model.state_dict_for_saving(None, None, None)
|
|
|
|
new_sd = {}
|
|
for k in sd:
|
|
if k.startswith(default_prefix):
|
|
new_key = model_key_prefix + k[len(default_prefix):]
|
|
else:
|
|
new_key = k # In case the key doesn't start with the default prefix, keep it unchanged
|
|
t = sd[k]
|
|
if not t.is_contiguous():
|
|
t = t.contiguous()
|
|
new_sd[new_key] = t
|
|
print(full_output_folder)
|
|
if not os.path.exists(full_output_folder):
|
|
os.makedirs(full_output_folder)
|
|
save_torch_file(new_sd, os.path.join(full_output_folder, output_checkpoint))
|
|
return {}
|
|
|
|
class StyleModelApplyAdvanced:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"style_model": ("STYLE_MODEL", ),
|
|
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001}),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "apply_stylemodel"
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRIPTION = "StyleModelApply but with strength parameter"
|
|
|
|
def apply_stylemodel(self, clip_vision_output, style_model, conditioning, strength=1.0):
|
|
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
|
|
cond = strength * cond
|
|
c = []
|
|
for t in conditioning:
|
|
n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
|
|
c.append(n)
|
|
return (c, )
|
|
|
|
class AudioConcatenate:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"audio1": ("AUDIO",),
|
|
"audio2": ("AUDIO",),
|
|
"direction": (
|
|
[ 'right',
|
|
'left',
|
|
],
|
|
{
|
|
"default": 'right'
|
|
}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("AUDIO",)
|
|
FUNCTION = "concanate"
|
|
CATEGORY = "KJNodes/audio"
|
|
DESCRIPTION = """
|
|
Concatenates the audio1 to audio2 in the specified direction.
|
|
"""
|
|
|
|
def concanate(self, audio1, audio2, direction):
|
|
sample_rate_1 = audio1["sample_rate"]
|
|
sample_rate_2 = audio2["sample_rate"]
|
|
if sample_rate_1 != sample_rate_2:
|
|
raise Exception("Sample rates of the two audios do not match")
|
|
|
|
waveform_1 = audio1["waveform"]
|
|
print(waveform_1.shape)
|
|
waveform_2 = audio2["waveform"]
|
|
|
|
# Concatenate based on the specified direction
|
|
if direction == 'right':
|
|
concatenated_audio = torch.cat((waveform_1, waveform_2), dim=2) # Concatenate along width
|
|
elif direction == 'left':
|
|
concatenated_audio= torch.cat((waveform_2, waveform_1), dim=2) # Concatenate along width
|
|
return ({"waveform": concatenated_audio, "sample_rate": sample_rate_1},)
|
|
|
|
class LeapfusionHunyuanI2V:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"model": ("MODEL",),
|
|
"latent": ("LATENT",),
|
|
"index": ("INT", {"default": 0, "min": -1, "max": 1000, "step": 1,"tooltip": "The index of the latent to be replaced. 0 for first frame and -1 for last"}),
|
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The start percentage of steps to apply"}),
|
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The end percentage of steps to apply"}),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def patch(self, model, latent, index, strength, start_percent, end_percent):
|
|
|
|
def outer_wrapper(samples, index, start_percent, end_percent):
|
|
def unet_wrapper(apply_model, args):
|
|
steps = args["c"]["transformer_options"]["sample_sigmas"]
|
|
inp, timestep, c = args["input"], args["timestep"], args["c"]
|
|
matched_step_index = (steps == timestep).nonzero()
|
|
if len(matched_step_index) > 0:
|
|
current_step_index = matched_step_index.item()
|
|
else:
|
|
for i in range(len(steps) - 1):
|
|
# walk from beginning of steps until crossing the timestep
|
|
if (steps[i] - timestep[0]) * (steps[i + 1] - timestep[0]) <= 0:
|
|
current_step_index = i
|
|
break
|
|
else:
|
|
current_step_index = 0
|
|
current_percent = current_step_index / (len(steps) - 1)
|
|
if samples is not None:
|
|
if start_percent <= current_percent <= end_percent:
|
|
inp[:, :, [index], :, :] = samples[:, :, [0], :, :].to(inp)
|
|
else:
|
|
inp[:, :, [index], :, :] = torch.zeros(1)
|
|
return apply_model(inp, timestep, **c)
|
|
return unet_wrapper
|
|
|
|
samples = latent["samples"] * 0.476986 * strength
|
|
m = model.clone()
|
|
m.set_model_unet_function_wrapper(outer_wrapper(samples, index, start_percent, end_percent))
|
|
|
|
return (m,)
|
|
|
|
class ImageNoiseAugmentation:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"noise_aug_strength": ("FLOAT", {"default": None, "min": 0.0, "max": 100.0, "step": 0.001}),
|
|
"seed": ("INT", {"default": 123,"min": 0, "max": 0xffffffffffffffff, "step": 1}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "add_noise"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Add noise to an image.
|
|
"""
|
|
|
|
def add_noise(self, image, noise_aug_strength, seed):
|
|
torch.manual_seed(seed)
|
|
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * noise_aug_strength
|
|
image_noise = torch.randn_like(image) * sigma[:, None, None, None]
|
|
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise)
|
|
image_out = image + image_noise
|
|
return image_out,
|
|
|
|
class VAELoaderKJ:
|
|
@staticmethod
|
|
def vae_list():
|
|
vaes = folder_paths.get_filename_list("vae")
|
|
approx_vaes = folder_paths.get_filename_list("vae_approx")
|
|
sdxl_taesd_enc = False
|
|
sdxl_taesd_dec = False
|
|
sd1_taesd_enc = False
|
|
sd1_taesd_dec = False
|
|
sd3_taesd_enc = False
|
|
sd3_taesd_dec = False
|
|
f1_taesd_enc = False
|
|
f1_taesd_dec = False
|
|
|
|
for v in approx_vaes:
|
|
if v.startswith("taesd_decoder."):
|
|
sd1_taesd_dec = True
|
|
elif v.startswith("taesd_encoder."):
|
|
sd1_taesd_enc = True
|
|
elif v.startswith("taesdxl_decoder."):
|
|
sdxl_taesd_dec = True
|
|
elif v.startswith("taesdxl_encoder."):
|
|
sdxl_taesd_enc = True
|
|
elif v.startswith("taesd3_decoder."):
|
|
sd3_taesd_dec = True
|
|
elif v.startswith("taesd3_encoder."):
|
|
sd3_taesd_enc = True
|
|
elif v.startswith("taef1_encoder."):
|
|
f1_taesd_dec = True
|
|
elif v.startswith("taef1_decoder."):
|
|
f1_taesd_enc = True
|
|
if sd1_taesd_dec and sd1_taesd_enc:
|
|
vaes.append("taesd")
|
|
if sdxl_taesd_dec and sdxl_taesd_enc:
|
|
vaes.append("taesdxl")
|
|
if sd3_taesd_dec and sd3_taesd_enc:
|
|
vaes.append("taesd3")
|
|
if f1_taesd_dec and f1_taesd_enc:
|
|
vaes.append("taef1")
|
|
return vaes
|
|
|
|
@staticmethod
|
|
def load_taesd(name):
|
|
sd = {}
|
|
approx_vaes = folder_paths.get_filename_list("vae_approx")
|
|
|
|
encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
|
|
decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
|
|
|
|
enc = load_torch_file(folder_paths.get_full_path_or_raise("vae_approx", encoder))
|
|
for k in enc:
|
|
sd["taesd_encoder.{}".format(k)] = enc[k]
|
|
|
|
dec = load_torch_file(folder_paths.get_full_path_or_raise("vae_approx", decoder))
|
|
for k in dec:
|
|
sd["taesd_decoder.{}".format(k)] = dec[k]
|
|
|
|
if name == "taesd":
|
|
sd["vae_scale"] = torch.tensor(0.18215)
|
|
sd["vae_shift"] = torch.tensor(0.0)
|
|
elif name == "taesdxl":
|
|
sd["vae_scale"] = torch.tensor(0.13025)
|
|
sd["vae_shift"] = torch.tensor(0.0)
|
|
elif name == "taesd3":
|
|
sd["vae_scale"] = torch.tensor(1.5305)
|
|
sd["vae_shift"] = torch.tensor(0.0609)
|
|
elif name == "taef1":
|
|
sd["vae_scale"] = torch.tensor(0.3611)
|
|
sd["vae_shift"] = torch.tensor(0.1159)
|
|
return sd
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": { "vae_name": (s.vae_list(), ),
|
|
"device": (["main_device", "cpu"],),
|
|
"weight_dtype": (["bf16", "fp16", "fp32" ],),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("VAE",)
|
|
FUNCTION = "load_vae"
|
|
CATEGORY = "KJNodes/vae"
|
|
|
|
def load_vae(self, vae_name, device, weight_dtype):
|
|
from comfy.sd import VAE
|
|
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[weight_dtype]
|
|
if device == "main_device":
|
|
device = model_management.get_torch_device()
|
|
elif device == "cpu":
|
|
device = torch.device("cpu")
|
|
if vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]:
|
|
sd = self.load_taesd(vae_name)
|
|
else:
|
|
vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)
|
|
sd = load_torch_file(vae_path)
|
|
vae = VAE(sd=sd, device=device, dtype=dtype)
|
|
return (vae,)
|
|
|
|
from comfy.samplers import sampling_function, CFGGuider
|
|
class Guider_ScheduledCFG(CFGGuider):
|
|
|
|
def set_cfg(self, cfg, start_percent, end_percent):
|
|
self.cfg = cfg
|
|
self.start_percent = start_percent
|
|
self.end_percent = end_percent
|
|
|
|
def predict_noise(self, x, timestep, model_options={}, seed=None):
|
|
steps = model_options["transformer_options"]["sample_sigmas"]
|
|
matched_step_index = (steps == timestep).nonzero()
|
|
assert not (isinstance(self.cfg, list) and len(self.cfg) != (len(steps) - 1)), "cfg list length must match step count"
|
|
if len(matched_step_index) > 0:
|
|
current_step_index = matched_step_index.item()
|
|
else:
|
|
for i in range(len(steps) - 1):
|
|
# walk from beginning of steps until crossing the timestep
|
|
if (steps[i] - timestep[0]) * (steps[i + 1] - timestep[0]) <= 0:
|
|
current_step_index = i
|
|
break
|
|
else:
|
|
current_step_index = 0
|
|
current_percent = current_step_index / (len(steps) - 1)
|
|
|
|
if self.start_percent <= current_percent <= self.end_percent:
|
|
if isinstance(self.cfg, list):
|
|
cfg = self.cfg[current_step_index]
|
|
else:
|
|
cfg = self.cfg
|
|
uncond = self.conds.get("negative", None)
|
|
else:
|
|
uncond = None
|
|
cfg = 1.0
|
|
|
|
return sampling_function(self.inner_model, x, timestep, uncond, self.conds.get("positive", None), cfg, model_options=model_options, seed=seed)
|
|
|
|
class ScheduledCFGGuidance:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"cfg": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 100.0, "step": 0.01}),
|
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step":0.01}),
|
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01}),
|
|
},
|
|
}
|
|
RETURN_TYPES = ("GUIDER",)
|
|
FUNCTION = "get_guider"
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRiPTION = """
|
|
CFG Guider that allows for scheduled CFG changes over steps, the steps outside the range will use CFG 1.0 thus being processed faster.
|
|
cfg input can be a list of floats matching step count, or a single float for all steps.
|
|
"""
|
|
|
|
def get_guider(self, model, cfg, positive, negative, start_percent, end_percent):
|
|
guider = Guider_ScheduledCFG(model)
|
|
guider.set_conds(positive, negative)
|
|
guider.set_cfg(cfg, start_percent, end_percent)
|
|
return (guider, )
|
|
|
|
|
|
class ApplyRifleXRoPE_WanVideo:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"model": ("MODEL",),
|
|
"latent": ("LATENT", {"tooltip": "Only used to get the latent count"}),
|
|
"k": ("INT", {"default": 6, "min": 1, "max": 100, "step": 1, "tooltip": "Index of intrinsic frequency"}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
CATEGORY = "KJNodes/experimental"
|
|
EXPERIMENTAL = True
|
|
DESCRIPTION = "Extends the potential frame count of HunyuanVideo using this method: https://github.com/thu-ml/RIFLEx"
|
|
|
|
def patch(self, model, latent, k):
|
|
model_class = model.model.diffusion_model
|
|
|
|
model_clone = model.clone()
|
|
num_frames = latent["samples"].shape[2]
|
|
d = model_class.dim // model_class.num_heads
|
|
|
|
rope_embedder = EmbedND_RifleX(
|
|
d,
|
|
10000.0,
|
|
[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)],
|
|
num_frames,
|
|
k
|
|
)
|
|
|
|
model_clone.add_object_patch(f"diffusion_model.rope_embedder", rope_embedder)
|
|
|
|
return (model_clone, )
|
|
|
|
class ApplyRifleXRoPE_HunuyanVideo:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"model": ("MODEL",),
|
|
"latent": ("LATENT", {"tooltip": "Only used to get the latent count"}),
|
|
"k": ("INT", {"default": 4, "min": 1, "max": 100, "step": 1, "tooltip": "Index of intrinsic frequency"}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
CATEGORY = "KJNodes/experimental"
|
|
EXPERIMENTAL = True
|
|
DESCRIPTION = "Extends the potential frame count of HunyuanVideo using this method: https://github.com/thu-ml/RIFLEx"
|
|
|
|
def patch(self, model, latent, k):
|
|
model_class = model.model.diffusion_model
|
|
|
|
model_clone = model.clone()
|
|
num_frames = latent["samples"].shape[2]
|
|
|
|
pe_embedder = EmbedND_RifleX(
|
|
model_class.params.hidden_size // model_class.params.num_heads,
|
|
model_class.params.theta,
|
|
model_class.params.axes_dim,
|
|
num_frames,
|
|
k
|
|
)
|
|
|
|
model_clone.add_object_patch(f"diffusion_model.pe_embedder", pe_embedder)
|
|
|
|
return (model_clone, )
|
|
|
|
def rope_riflex(pos, dim, theta, L_test, k):
|
|
from einops import rearrange
|
|
assert dim % 2 == 0
|
|
if model_management.is_device_mps(pos.device) or model_management.is_intel_xpu() or model_management.is_directml_enabled():
|
|
device = torch.device("cpu")
|
|
else:
|
|
device = pos.device
|
|
|
|
scale = torch.linspace(0, (dim - 2) / dim, steps=dim//2, dtype=torch.float64, device=device)
|
|
omega = 1.0 / (theta**scale)
|
|
|
|
# RIFLEX modification - adjust last frequency component if L_test and k are provided
|
|
if k and L_test:
|
|
omega[k-1] = 0.9 * 2 * torch.pi / L_test
|
|
|
|
out = torch.einsum("...n,d->...nd", pos.to(dtype=torch.float32, device=device), omega)
|
|
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
|
|
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
|
|
return out.to(dtype=torch.float32, device=pos.device)
|
|
|
|
class EmbedND_RifleX(nn.Module):
|
|
def __init__(self, dim, theta, axes_dim, num_frames, k):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.theta = theta
|
|
self.axes_dim = axes_dim
|
|
self.num_frames = num_frames
|
|
self.k = k
|
|
|
|
def forward(self, ids):
|
|
n_axes = ids.shape[-1]
|
|
emb = torch.cat(
|
|
[rope_riflex(ids[..., i], self.axes_dim[i], self.theta, self.num_frames, self.k if i == 0 else 0) for i in range(n_axes)],
|
|
dim=-3,
|
|
)
|
|
return emb.unsqueeze(1)
|
|
|
|
|
|
class Timer:
|
|
def __init__(self, name):
|
|
self.name = name
|
|
self.start_time = None
|
|
self.elapsed = 0
|
|
|
|
class TimerNodeKJ:
|
|
@classmethod
|
|
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"any_input": (IO.ANY, ),
|
|
"mode": (["start", "stop"],),
|
|
"name": ("STRING", {"default": "Timer"}),
|
|
},
|
|
"optional": {
|
|
"timer": ("TIMER",),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = (IO.ANY, "TIMER", "INT", )
|
|
RETURN_NAMES = ("any_output", "timer", "time")
|
|
FUNCTION = "timer"
|
|
CATEGORY = "KJNodes/misc"
|
|
|
|
def timer(self, mode, name, any_input=None, timer=None):
|
|
if timer is None:
|
|
if mode == "start":
|
|
timer = Timer(name=name)
|
|
timer.start_time = time.time()
|
|
return {"ui": {
|
|
"text": [f"{timer.start_time}"]},
|
|
"result": (any_input, timer, 0)
|
|
}
|
|
elif mode == "stop" and timer is not None:
|
|
end_time = time.time()
|
|
timer.elapsed = int((end_time - timer.start_time) * 1000)
|
|
timer.start_time = None
|
|
return (any_input, timer, timer.elapsed)
|
|
|
|
class HunyuanVideoEncodeKeyframesToCond:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"positive": ("CONDITIONING", ),
|
|
"vae": ("VAE", ),
|
|
"start_frame": ("IMAGE", ),
|
|
"end_frame": ("IMAGE", ),
|
|
"num_frames": ("INT", {"default": 33, "min": 2, "max": 4096, "step": 1}),
|
|
"tile_size": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
"overlap": ("INT", {"default": 64, "min": 0, "max": 4096, "step": 32}),
|
|
"temporal_size": ("INT", {"default": 64, "min": 8, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to encode at a time."}),
|
|
"temporal_overlap": ("INT", {"default": 8, "min": 4, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to overlap."}),
|
|
},
|
|
"optional": {
|
|
"negative": ("CONDITIONING", ),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL", "CONDITIONING","CONDITIONING","LATENT")
|
|
RETURN_NAMES = ("model", "positive", "negative", "latent")
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "KJNodes/videomodels"
|
|
|
|
def encode(self, model, positive, start_frame, end_frame, num_frames, vae, tile_size, overlap, temporal_size, temporal_overlap, negative=None):
|
|
|
|
model_clone = model.clone()
|
|
|
|
model_clone.add_object_patch("concat_keys", ("concat_image",))
|
|
|
|
|
|
x = (start_frame.shape[1] // 8) * 8
|
|
y = (start_frame.shape[2] // 8) * 8
|
|
|
|
if start_frame.shape[1] != x or start_frame.shape[2] != y:
|
|
x_offset = (start_frame.shape[1] % 8) // 2
|
|
y_offset = (start_frame.shape[2] % 8) // 2
|
|
start_frame = start_frame[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
|
if end_frame.shape[1] != x or end_frame.shape[2] != y:
|
|
x_offset = (start_frame.shape[1] % 8) // 2
|
|
y_offset = (start_frame.shape[2] % 8) // 2
|
|
end_frame = end_frame[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
|
|
|
video_frames = torch.zeros(num_frames-2, start_frame.shape[1], start_frame.shape[2], start_frame.shape[3], device=start_frame.device, dtype=start_frame.dtype)
|
|
video_frames = torch.cat([start_frame, video_frames, end_frame], dim=0)
|
|
|
|
concat_latent = vae.encode_tiled(video_frames[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap)
|
|
|
|
out_latent = {}
|
|
out_latent["samples"] = torch.zeros_like(concat_latent)
|
|
|
|
out = []
|
|
for conditioning in [positive, negative if negative is not None else []]:
|
|
c = []
|
|
for t in conditioning:
|
|
d = t[1].copy()
|
|
d["concat_latent_image"] = concat_latent
|
|
n = [t[0], d]
|
|
c.append(n)
|
|
out.append(c)
|
|
if len(out) == 1:
|
|
out.append(out[0])
|
|
return (model_clone, out[0], out[1], out_latent)
|
|
|
|
|
|
class LazySwitchKJ:
|
|
def __init__(self):
|
|
pass
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"switch": ("BOOLEAN",),
|
|
"on_false": (IO.ANY, {"lazy": True}),
|
|
"on_true": (IO.ANY, {"lazy": True}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = (IO.ANY,)
|
|
FUNCTION = "switch"
|
|
CATEGORY = "KJNodes/misc"
|
|
DESCRIPTION = "Controls flow of execution based on a boolean switch."
|
|
|
|
def check_lazy_status(self, switch, on_false=None, on_true=None):
|
|
if switch and on_true is None:
|
|
return ["on_true"]
|
|
if not switch and on_false is None:
|
|
return ["on_false"]
|
|
|
|
def switch(self, switch, on_false = None, on_true=None):
|
|
value = on_true if switch else on_false
|
|
return (value,)
|
|
|
|
|
|
from comfy.patcher_extension import WrappersMP
|
|
from comfy.sampler_helpers import prepare_mask
|
|
class TTM_SampleWrapper:
|
|
def __init__(self, mask, steps):
|
|
self.mask = mask
|
|
self.steps = steps
|
|
|
|
def __call__(self, sampler, guider, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar):
|
|
model_options = extra_args["model_options"]
|
|
wrappers = model_options["transformer_options"]["wrappers"]
|
|
w = wrappers.setdefault(WrappersMP.APPLY_MODEL, {})
|
|
|
|
if self.mask is not None:
|
|
motion_mask = self.mask.reshape((-1, 1, self.mask.shape[-2], self.mask.shape[-1]))
|
|
motion_mask = prepare_mask(motion_mask, noise.shape, noise.device)
|
|
|
|
scale_latent_inpaint = guider.model_patcher.model.scale_latent_inpaint
|
|
w["TTM_ApplyModel_Wrapper"] = [TTM_ApplyModel_Wrapper(latent_image, noise, motion_mask, self.steps, scale_latent_inpaint)]
|
|
|
|
out = sampler(guider, sigmas, extra_args, callback, noise, latent_image, denoise_mask, disable_pbar)
|
|
|
|
return out
|
|
|
|
|
|
class TTM_ApplyModel_Wrapper:
|
|
def __init__(self, reference_samples, noise, motion_mask, steps, scale_latent_inpaint):
|
|
self.reference_samples = reference_samples
|
|
self.noise = noise
|
|
self.motion_mask = motion_mask
|
|
self.steps = steps
|
|
self.scale_latent_inpaint = scale_latent_inpaint
|
|
|
|
def __call__(self, executor, x, t, c_concat, c_crossattn, control, transformer_options, **kwargs):
|
|
sigmas = transformer_options["sample_sigmas"]
|
|
|
|
matched = (sigmas == t).nonzero(as_tuple=True)[0]
|
|
if matched.numel() > 0:
|
|
current_step_index = matched.item()
|
|
else:
|
|
crossing = ((sigmas[:-1] - t) * (sigmas[1:] - t) <= 0).nonzero(as_tuple=True)[0]
|
|
current_step_index = crossing.item() if crossing.numel() > 0 else 0
|
|
|
|
next_sigma = sigmas[current_step_index + 1] if current_step_index < len(sigmas) - 1 else sigmas[current_step_index]
|
|
|
|
if current_step_index != 0 and current_step_index < self.steps:
|
|
noisy_latent = self.scale_latent_inpaint(x=x, sigma=torch.tensor([next_sigma]), noise=self.noise.to(x), latent_image=self.reference_samples.to(x))
|
|
if self.motion_mask is not None:
|
|
x = x * (1-self.motion_mask).to(x) + noisy_latent * self.motion_mask.to(x)
|
|
else:
|
|
x = noisy_latent
|
|
|
|
return executor(x, t, c_concat, c_crossattn, control, transformer_options, **kwargs)
|
|
|
|
|
|
class LatentInpaintTTM:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL", ),
|
|
"steps": ("INT", {"default": 7, "min": 0, "max": 888, "step": 1, "tooltip": "Number of steps to apply TTM inpainting for."}),
|
|
},
|
|
"optional": {
|
|
"mask": ("MASK", {"tooltip": "Latent mask where white (1.0) is the area to inpaint and black (0.0) is the area to keep unchanged."}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
EXPERIMENTAL = True
|
|
DESCRIPTION = "https://github.com/time-to-move/TTM"
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def patch(self, model, steps, mask=None):
|
|
m = model.clone()
|
|
m.add_wrapper_with_key(WrappersMP.SAMPLER_SAMPLE, "TTM_SampleWrapper", TTM_SampleWrapper(mask, steps))
|
|
return (m, ) |