ComfyUI-KJNodes/nodes.py
2023-10-11 00:35:32 +03:00

744 lines
28 KiB
Python

import nodes
import torch
import torch.nn.functional as F
import scipy.ndimage
import numpy as np
from PIL import ImageColor, Image, ImageDraw, ImageFont
import os
import librosa
from scipy.special import erf
from .fluid import Fluid
from nodes import MAX_RESOLUTION
script_dir = os.path.dirname(os.path.abspath(__file__))
class INTConstant:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"value": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("value",)
FUNCTION = "get_value"
CATEGORY = "KJNodes"
def get_value(self, value):
return (value,)
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
class CreateFluidMask:
RETURN_TYPES = ("IMAGE", "MASK")
FUNCTION = "createfluidmask"
CATEGORY = "KJNodes"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"inflow_count": ("INT", {"default": 3,"min": 0, "max": 255, "step": 1}),
"inflow_velocity": ("INT", {"default": 1,"min": 0, "max": 255, "step": 1}),
"inflow_radius": ("INT", {"default": 8,"min": 0, "max": 255, "step": 1}),
"inflow_padding": ("INT", {"default": 50,"min": 0, "max": 255, "step": 1}),
"inflow_duration": ("INT", {"default": 60,"min": 0, "max": 255, "step": 1}),
},
}
#using code from https://github.com/GregTJ/stable-fluids
def createfluidmask(self, frames, width, height, invert, inflow_count, inflow_velocity, inflow_radius, inflow_padding, inflow_duration):
out = []
masks = []
print(frames)
RESOLUTION = width, height
DURATION = frames
INFLOW_PADDING = inflow_padding
INFLOW_DURATION = inflow_duration
INFLOW_RADIUS = inflow_radius
INFLOW_VELOCITY = inflow_velocity
INFLOW_COUNT = inflow_count
print('Generating fluid solver, this may take some time.')
fluid = Fluid(RESOLUTION, 'dye')
center = np.floor_divide(RESOLUTION, 2)
r = np.min(center) - INFLOW_PADDING
points = np.linspace(-np.pi, np.pi, INFLOW_COUNT, endpoint=False)
points = tuple(np.array((np.cos(p), np.sin(p))) for p in points)
normals = tuple(-p for p in points)
points = tuple(r * p + center for p in points)
inflow_velocity = np.zeros_like(fluid.velocity)
inflow_dye = np.zeros(fluid.shape)
for p, n in zip(points, normals):
mask = np.linalg.norm(fluid.indices - p[:, None, None], axis=0) <= INFLOW_RADIUS
inflow_velocity[:, mask] += n[:, None] * INFLOW_VELOCITY
inflow_dye[mask] = 1
for f in range(DURATION):
print(f'Computing frame {f + 1} of {DURATION}.')
if f <= INFLOW_DURATION:
fluid.velocity += inflow_velocity
fluid.dye += inflow_dye
curl = fluid.step()[1]
# Using the error function to make the contrast a bit higher.
# Any other sigmoid function e.g. smoothstep would work.
curl = (erf(curl * 2) + 1) / 4
color = np.dstack((curl, np.ones(fluid.shape), fluid.dye))
color = (np.clip(color, 0, 1) * 255).astype('uint8')
image = np.array(color).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
if invert:
return (1.0 - torch.cat(out, dim=0),1.0 - torch.cat(masks, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class CreateAudioMask:
RETURN_TYPES = ("IMAGE",)
FUNCTION = "createaudiomask"
CATEGORY = "KJNodes"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"scale": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 2.0, "step": 0.01}),
"audio_path": ("STRING", {"default": "audio.wav"}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
},
}
def createaudiomask(self, frames, width, height, invert, audio_path, scale):
# Define the number of images in the batch
batch_size = frames
out = []
masks = []
if audio_path == "audio.wav": #I don't know why relative path won't work otherwise...
audio_path = os.path.join(script_dir, audio_path)
audio, sr = librosa.load(audio_path)
spectrogram = np.abs(librosa.stft(audio))
for i in range(batch_size):
image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(image)
frame = spectrogram[:, i]
circle_radius = int(height * np.mean(frame))
circle_radius *= scale
circle_center = (width // 2, height // 2) # Calculate the center of the image
draw.ellipse([(circle_center[0] - circle_radius, circle_center[1] - circle_radius),
(circle_center[0] + circle_radius, circle_center[1] + circle_radius)],
fill='white')
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class CreateGradientMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "createmask"
CATEGORY = "KJNodes"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
},
}
def createmask(self, frames, width, height, invert):
# Define the number of images in the batch
batch_size = frames
out = []
# Create an empty array to store the image batch
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
# Generate the black to white gradient for each image
for i in range(batch_size):
gradient = np.linspace(1.0, 0.0, width, dtype=np.float32)
time = i / frames # Calculate the time variable
offset_gradient = gradient - time # Offset the gradient values based on time
image_batch[i] = offset_gradient.reshape(1, -1)
output = torch.from_numpy(image_batch)
mask = output
out.append(mask)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),)
class CreateFadeMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "createfademask"
CATEGORY = "KJNodes"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out"],),
"start_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
"midpoint_level": ("FLOAT", {"default": 0.5,"min": 0.0, "max": 1.0, "step": 0.01}),
"end_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
},
}
def createfademask(self, frames, width, height, invert, interpolation, start_level, midpoint_level, end_level):
def ease_in(t):
return t * t
def ease_out(t):
return 1 - (1 - t) * (1 - t)
def ease_in_out(t):
return 3 * t * t - 2 * t * t * t
batch_size = frames
out = []
image_batch = np.zeros((batch_size, height, width), dtype=np.float32)
for i in range(batch_size):
t = i / (batch_size - 1)
if interpolation == "ease_in":
t = ease_in(t)
elif interpolation == "ease_out":
t = ease_out(t)
elif interpolation == "ease_in_out":
t = ease_in_out(t)
if midpoint_level is not None:
if t < 0.5:
color = start_level - t * (start_level - midpoint_level) * 2
else:
color = midpoint_level - (t - 0.5) * (midpoint_level - end_level) * 2
else:
color = start_level - t * (start_level - end_level)
image = np.full((height, width), color, dtype=np.float32)
image_batch[i] = image
output = torch.from_numpy(image_batch)
mask = output
out.append(mask)
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),)
class CreateTextMask:
RETURN_TYPES = ("IMAGE", "MASK",)
FUNCTION = "createtextmask"
CATEGORY = "KJNodes"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"invert": ("BOOLEAN", {"default": False}),
"frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
"text_x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"text_y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
"font_size": ("INT", {"default": 32,"min": 8, "max": 4096, "step": 1}),
"text": ("STRING", {"default": "HELLO!"}),
"font_path": ("STRING", {"default": "fonts\\TTNorms-Black.otf"}),
"width": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"height": ("INT", {"default": 256,"min": 16, "max": 4096, "step": 1}),
"start_rotation": ("INT", {"default": 0,"min": 0, "max": 359, "step": 1}),
"end_rotation": ("INT", {"default": 359,"min": -359, "max": 359, "step": 1}),
},
}
def createtextmask(self, frames, width, height, invert, text_x, text_y, text, font_size, font_path, start_rotation, end_rotation):
# Define the number of images in the batch
batch_size = frames
out = []
masks = []
rotation = start_rotation
if frames > 1:
rotation_increment = (end_rotation - start_rotation) / (batch_size - 1)
if font_path == "fonts\\TTNorms-Black.otf": #I don't know why relative path won't work otherwise...
font_path = os.path.join(script_dir, font_path)
# Generate the text
for i in range(batch_size):
image = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(image)
font = ImageFont.truetype(font_path, font_size)
text_width, text_height = draw.textsize(text, font=font)
text_center_x = text_x + text_width / 2
text_center_y = text_y + text_height / 2
draw.text((text_x, text_y), text, font=font, fill="white")
image = image.rotate(rotation, center=(text_center_x, text_center_y))
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
mask = image[:, :, :, 0]
masks.append(mask)
out.append(image)
rotation += rotation_increment
if invert:
return (1.0 - torch.cat(out, dim=0),)
return (torch.cat(out, dim=0),torch.cat(masks, dim=0),)
class GrowMaskWithBlur:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"mask": ("MASK",),
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
"incremental_expandrate": ("INT", {"default": 0, "min": 0, "max": 100, "step": 1}),
"tapered_corners": ("BOOLEAN", {"default": True}),
"flip_input": ("BOOLEAN", {"default": False}),
"blur_radius": ("INT", {
"default": 0,
"min": 0,
"max": 31,
"step": 1
}),
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
},
}
CATEGORY = "KJNodes"
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "expand_mask"
def expand_mask(self, mask, expand, tapered_corners, flip_input, blur_radius, sigma, incremental_expandrate):
if( flip_input ):
mask = 1.0 - mask
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c],
[1, 1, 1],
[c, 1, c]])
growmask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
out = []
for m in growmask:
output = m.numpy()
for _ in range(abs(expand)):
if expand < 0:
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
else:
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
if expand < 0:
expand -= abs(incremental_expandrate) # Use abs(growrate) to ensure positive change
else:
expand += abs(incremental_expandrate) # Use abs(growrate) to ensure positive change
output = torch.from_numpy(output)
out.append(output)
blurred = torch.stack(out, dim=0).reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
batch_size, height, width, channels = blurred.shape
if blur_radius != 0:
blurkernel_size = blur_radius * 2 + 1
blurkernel = gaussian_kernel(blurkernel_size, sigma, device=blurred.device).repeat(channels, 1, 1).unsqueeze(1)
blurred = blurred.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
padded_image = F.pad(blurred, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
blurred = F.conv2d(padded_image, blurkernel, padding=blurkernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
blurred = blurred.permute(0, 2, 3, 1)
blurred = blurred[:, :, :, 0]
return (blurred, 1.0 - blurred,)
return (torch.stack(out, dim=0), 1.0 -torch.stack(out, dim=0),)
class PlotNode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"start": ("FLOAT", {"default": 0.5, "min": 0.5, "max": 1.0}),
"max_frames": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
}}
RETURN_TYPES = ("FLOAT", "INT",)
FUNCTION = "plot"
CATEGORY = "KJNodes"
def plot(self, start, max_frames):
result = start + max_frames
return (result,)
class ColorToMask:
RETURN_TYPES = ("MASK",)
FUNCTION = "clip"
CATEGORY = "KJNodes"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"invert": ("BOOLEAN", {"default": False}),
"red": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"green": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"blue": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
"threshold": ("INT", {"default": 10,"min": 0, "max": 255, "step": 1}),
},
}
def clip(self, images, red, green, blue, threshold, invert):
color = np.array([red, green, blue])
images = 255. * images.cpu().numpy()
images = np.clip(images, 0, 255).astype(np.uint8)
images = [Image.fromarray(image) for image in images]
images = [np.array(image) for image in images]
black = [0, 0, 0]
white = [255, 255, 255]
if invert:
black, white = white, black
new_images = []
for image in images:
new_image = np.full_like(image, black)
color_distances = np.linalg.norm(image - color, axis=-1)
complement_indexes = color_distances <= threshold
new_image[complement_indexes] = white
new_images.append(new_image)
new_images = np.array(new_images).astype(np.float32) / 255.0
new_images = torch.from_numpy(new_images).permute(3, 0, 1, 2)
return new_images
class ConditioningMultiCombine:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"inputcount": ("INT", {"default": 2, "min": 2, "max": 20, "step": 1}),
"conditioning_1": ("CONDITIONING", ),
"conditioning_2": ("CONDITIONING", ),
},
}
RETURN_TYPES = ("CONDITIONING", "INT")
RETURN_NAMES = ("combined", "inputcount")
FUNCTION = "combine"
CATEGORY = "KJNodes"
def combine(self, inputcount, **kwargs):
cond_combine_node = nodes.ConditioningCombine()
cond = kwargs["conditioning_1"]
for c in range(1, inputcount):
new_cond = kwargs[f"conditioning_{c + 1}"]
cond = cond_combine_node.combine(new_cond, cond)[0]
return (cond, inputcount,)
class ConditioningSetMaskAndCombine:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes"
def append(self, positive_1, negative_1, positive_2, negative_2, mask_1, mask_2, set_cond_area, strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
for t in positive_1:
n = [t[0], t[1].copy()]
_, h, w = mask_1.shape
n[1]['mask'] = mask_1
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in positive_2:
n = [t[0], t[1].copy()]
_, h, w = mask_2.shape
n[1]['mask'] = mask_2
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in negative_1:
n = [t[0], t[1].copy()]
_, h, w = mask_1.shape
n[1]['mask'] = mask_1
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
for t in negative_2:
n = [t[0], t[1].copy()]
_, h, w = mask_2.shape
n[1]['mask'] = mask_2
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
return (c, c2)
class ConditioningSetMaskAndCombine3:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes"
def append(self, positive_1, negative_1, positive_2, positive_3, negative_2, negative_3, mask_1, mask_2, mask_3, set_cond_area, strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
for t in positive_1:
n = [t[0], t[1].copy()]
_, h, w = mask_1.shape
n[1]['mask'] = mask_1
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in positive_2:
n = [t[0], t[1].copy()]
_, h, w = mask_2.shape
n[1]['mask'] = mask_2
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in positive_3:
n = [t[0], t[1].copy()]
_, h, w = mask_3.shape
n[1]['mask'] = mask_3
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in negative_1:
n = [t[0], t[1].copy()]
_, h, w = mask_1.shape
n[1]['mask'] = mask_1
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
for t in negative_2:
n = [t[0], t[1].copy()]
_, h, w = mask_2.shape
n[1]['mask'] = mask_2
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
for t in negative_3:
n = [t[0], t[1].copy()]
_, h, w = mask_3.shape
n[1]['mask'] = mask_3
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
return (c, c2)
class ConditioningSetMaskAndCombine4:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive_1": ("CONDITIONING", ),
"negative_1": ("CONDITIONING", ),
"positive_2": ("CONDITIONING", ),
"negative_2": ("CONDITIONING", ),
"positive_3": ("CONDITIONING", ),
"negative_3": ("CONDITIONING", ),
"positive_4": ("CONDITIONING", ),
"negative_4": ("CONDITIONING", ),
"mask_1": ("MASK", ),
"mask_2": ("MASK", ),
"mask_3": ("MASK", ),
"mask_4": ("MASK", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"set_cond_area": (["default", "mask bounds"],),
}
}
RETURN_TYPES = ("CONDITIONING","CONDITIONING",)
RETURN_NAMES = ("combined_positive", "combined_negative",)
FUNCTION = "append"
CATEGORY = "KJNodes"
def append(self, positive_1, negative_1, positive_2, positive_3, positive_4, negative_2, negative_3, negative_4,mask_1, mask_2, mask_3, mask_4, set_cond_area, strength):
c = []
c2 = []
set_area_to_bounds = False
if set_cond_area != "default":
set_area_to_bounds = True
if len(mask_1.shape) < 3:
mask_1 = mask_1.unsqueeze(0)
if len(mask_2.shape) < 3:
mask_2 = mask_2.unsqueeze(0)
if len(mask_3.shape) < 3:
mask_3 = mask_3.unsqueeze(0)
if len(mask_4.shape) < 3:
mask_4 = mask_4.unsqueeze(0)
for t in positive_1:
n = [t[0], t[1].copy()]
_, h, w = mask_1.shape
n[1]['mask'] = mask_1
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in positive_2:
n = [t[0], t[1].copy()]
_, h, w = mask_2.shape
n[1]['mask'] = mask_2
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in positive_3:
n = [t[0], t[1].copy()]
_, h, w = mask_3.shape
n[1]['mask'] = mask_3
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in positive_4:
n = [t[0], t[1].copy()]
_, h, w = mask_3.shape
n[1]['mask'] = mask_3
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c.append(n)
for t in negative_1:
n = [t[0], t[1].copy()]
_, h, w = mask_1.shape
n[1]['mask'] = mask_1
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
for t in negative_2:
n = [t[0], t[1].copy()]
_, h, w = mask_2.shape
n[1]['mask'] = mask_2
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
for t in negative_3:
n = [t[0], t[1].copy()]
_, h, w = mask_3.shape
n[1]['mask'] = mask_3
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
for t in negative_4:
n = [t[0], t[1].copy()]
_, h, w = mask_3.shape
n[1]['mask'] = mask_3
n[1]['set_area_to_bounds'] = set_area_to_bounds
n[1]['mask_strength'] = strength
c2.append(n)
return (c, c2)
NODE_CLASS_MAPPINGS = {
"INTConstant": INTConstant,
"ConditioningMultiCombine": ConditioningMultiCombine,
"ConditioningSetMaskAndCombine": ConditioningSetMaskAndCombine,
"ConditioningSetMaskAndCombine3": ConditioningSetMaskAndCombine3,
"ConditioningSetMaskAndCombine4": ConditioningSetMaskAndCombine4,
"GrowMaskWithBlur": GrowMaskWithBlur,
"ColorToMask": ColorToMask,
"CreateGradientMask": CreateGradientMask,
"CreateTextMask": CreateTextMask,
"CreateAudioMask": CreateAudioMask,
"CreateFadeMask": CreateFadeMask,
"CreateFluidMask" :CreateFluidMask,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"INTConstant": "INT Constant",
"ConditioningMultiCombine": "Conditioning Multi Combine",
"ConditioningSetMaskAndCombine": "ConditioningSetMaskAndCombine",
"ConditioningSetMaskAndCombine3": "ConditioningSetMaskAndCombine3",
"ConditioningSetMaskAndCombine4": "ConditioningSetMaskAndCombine4",
"GrowMaskWithBlur": "GrowMaskWithBlur",
"ColorToMask": "ColorToMask",
"CreateGradientMask": "CreateGradientMask",
"CreateTextMask" : "CreateTextMask",
"CreateFadeMask" : "CreateFadeMask",
"CreateFluidMask" : "CreateFluidMask",
}