mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-16 16:24:31 +08:00
Trying to set capture size for cameras that support multiple resolutions. Might be better to use two separate values for that or query the camera's native resolutions, but for now that's what I needed.
1672 lines
61 KiB
Python
1672 lines
61 KiB
Python
import numpy as np
|
|
import time
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import random
|
|
import math
|
|
import os
|
|
import re
|
|
import json
|
|
import hashlib
|
|
import cv2
|
|
from PIL import ImageGrab, ImageDraw, ImageFont, Image, ImageSequence, ImageOps
|
|
|
|
from nodes import MAX_RESOLUTION, SaveImage
|
|
from comfy_extras.nodes_mask import ImageCompositeMasked
|
|
from comfy.cli_args import args
|
|
from comfy.utils import ProgressBar, common_upscale
|
|
import folder_paths
|
|
import model_management
|
|
|
|
script_directory = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
class ImagePass:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
},
|
|
}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "passthrough"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Passes the image through without modifying it.
|
|
"""
|
|
|
|
def passthrough(self, image):
|
|
return image,
|
|
|
|
class ColorMatch:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"image_ref": ("IMAGE",),
|
|
"image_target": ("IMAGE",),
|
|
"method": (
|
|
[
|
|
'mkl',
|
|
'hm',
|
|
'reinhard',
|
|
'mvgd',
|
|
'hm-mvgd-hm',
|
|
'hm-mkl-hm',
|
|
], {
|
|
"default": 'mkl'
|
|
}),
|
|
|
|
},
|
|
}
|
|
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("image",)
|
|
FUNCTION = "colormatch"
|
|
DESCRIPTION = """
|
|
color-matcher enables color transfer across images which comes in handy for automatic
|
|
color-grading of photographs, paintings and film sequences as well as light-field
|
|
and stopmotion corrections.
|
|
|
|
The methods behind the mappings are based on the approach from Reinhard et al.,
|
|
the Monge-Kantorovich Linearization (MKL) as proposed by Pitie et al. and our analytical solution
|
|
to a Multi-Variate Gaussian Distribution (MVGD) transfer in conjunction with classical histogram
|
|
matching. As shown below our HM-MVGD-HM compound outperforms existing methods.
|
|
https://github.com/hahnec/color-matcher/
|
|
|
|
"""
|
|
|
|
def colormatch(self, image_ref, image_target, method):
|
|
try:
|
|
from color_matcher import ColorMatcher
|
|
except:
|
|
raise Exception("Can't import color-matcher, did you install requirements.txt? Manual install: pip install color-matcher")
|
|
cm = ColorMatcher()
|
|
image_ref = image_ref.cpu()
|
|
image_target = image_target.cpu()
|
|
batch_size = image_target.size(0)
|
|
out = []
|
|
images_target = image_target.squeeze()
|
|
images_ref = image_ref.squeeze()
|
|
|
|
image_ref_np = images_ref.numpy()
|
|
images_target_np = images_target.numpy()
|
|
|
|
if image_ref.size(0) > 1 and image_ref.size(0) != batch_size:
|
|
raise ValueError("ColorMatch: Use either single reference image or a matching batch of reference images.")
|
|
|
|
for i in range(batch_size):
|
|
image_target_np = images_target_np if batch_size == 1 else images_target[i].numpy()
|
|
image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy()
|
|
try:
|
|
image_result = cm.transfer(src=image_target_np, ref=image_ref_np_i, method=method)
|
|
except BaseException as e:
|
|
print(f"Error occurred during transfer: {e}")
|
|
break
|
|
out.append(torch.from_numpy(image_result))
|
|
|
|
out = torch.stack(out, dim=0).to(torch.float32)
|
|
out.clamp_(0, 1)
|
|
return (out,)
|
|
|
|
class SaveImageWithAlpha:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
self.type = "output"
|
|
self.prefix_append = ""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"images": ("IMAGE", ),
|
|
"mask": ("MASK", ),
|
|
"filename_prefix": ("STRING", {"default": "ComfyUI"})},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_images_alpha"
|
|
OUTPUT_NODE = True
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Saves an image and mask as .PNG with the mask as the alpha channel.
|
|
"""
|
|
|
|
def save_images_alpha(self, images, mask, filename_prefix="ComfyUI_image_with_alpha", prompt=None, extra_pnginfo=None):
|
|
from PIL.PngImagePlugin import PngInfo
|
|
filename_prefix += self.prefix_append
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
|
results = list()
|
|
if mask.dtype == torch.float16:
|
|
mask = mask.to(torch.float32)
|
|
def file_counter():
|
|
max_counter = 0
|
|
# Loop through the existing files
|
|
for existing_file in os.listdir(full_output_folder):
|
|
# Check if the file matches the expected format
|
|
match = re.fullmatch(fr"{filename}_(\d+)_?\.[a-zA-Z0-9]+", existing_file)
|
|
if match:
|
|
# Extract the numeric portion of the filename
|
|
file_counter = int(match.group(1))
|
|
# Update the maximum counter value if necessary
|
|
if file_counter > max_counter:
|
|
max_counter = file_counter
|
|
return max_counter
|
|
|
|
for image, alpha in zip(images, mask):
|
|
i = 255. * image.cpu().numpy()
|
|
a = 255. * alpha.cpu().numpy()
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
|
|
# Resize the mask to match the image size
|
|
a_resized = Image.fromarray(a).resize(img.size, Image.LANCZOS)
|
|
a_resized = np.clip(a_resized, 0, 255).astype(np.uint8)
|
|
img.putalpha(Image.fromarray(a_resized, mode='L'))
|
|
metadata = None
|
|
if not args.disable_metadata:
|
|
metadata = PngInfo()
|
|
if prompt is not None:
|
|
metadata.add_text("prompt", json.dumps(prompt))
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
|
|
|
# Increment the counter by 1 to get the next available value
|
|
counter = file_counter() + 1
|
|
file = f"{filename}_{counter:05}.png"
|
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": self.type
|
|
})
|
|
|
|
return { "ui": { "images": results } }
|
|
|
|
class ImageConcanate:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"image1": ("IMAGE",),
|
|
"image2": ("IMAGE",),
|
|
"direction": (
|
|
[ 'right',
|
|
'down',
|
|
'left',
|
|
'up',
|
|
],
|
|
{
|
|
"default": 'right'
|
|
}),
|
|
"match_image_size": ("BOOLEAN", {"default": False}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "concanate"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Concatenates the image2 to image1 in the specified direction.
|
|
"""
|
|
|
|
def concanate(self, image1, image2, direction, match_image_size, first_image_shape=None):
|
|
# Check if the batch sizes are different
|
|
batch_size1 = image1.shape[0]
|
|
batch_size2 = image2.shape[0]
|
|
|
|
if batch_size1 != batch_size2:
|
|
# Calculate the number of repetitions needed
|
|
max_batch_size = max(batch_size1, batch_size2)
|
|
repeats1 = max_batch_size // batch_size1
|
|
repeats2 = max_batch_size // batch_size2
|
|
|
|
# Repeat the images to match the largest batch size
|
|
image1 = image1.repeat(repeats1, 1, 1, 1)
|
|
image2 = image2.repeat(repeats2, 1, 1, 1)
|
|
|
|
if match_image_size:
|
|
# Use first_image_shape if provided; otherwise, default to image1's shape
|
|
target_shape = first_image_shape if first_image_shape is not None else image1.shape
|
|
|
|
original_height = image2.shape[1]
|
|
original_width = image2.shape[2]
|
|
original_aspect_ratio = original_width / original_height
|
|
|
|
if direction in ['left', 'right']:
|
|
# Match the height and adjust the width to preserve aspect ratio
|
|
target_height = target_shape[1] # B, H, W, C format
|
|
target_width = int(target_height * original_aspect_ratio)
|
|
elif direction in ['up', 'down']:
|
|
# Match the width and adjust the height to preserve aspect ratio
|
|
target_width = target_shape[2] # B, H, W, C format
|
|
target_height = int(target_width / original_aspect_ratio)
|
|
|
|
# Adjust image2 to the expected format for common_upscale
|
|
image2_for_upscale = image2.movedim(-1, 1) # Move C to the second position (B, C, H, W)
|
|
|
|
# Resize image2 to match the target size while preserving aspect ratio
|
|
image2_resized = common_upscale(image2_for_upscale, target_width, target_height, "lanczos", "disabled")
|
|
|
|
# Adjust image2 back to the original format (B, H, W, C) after resizing
|
|
image2_resized = image2_resized.movedim(1, -1)
|
|
else:
|
|
image2_resized = image2
|
|
|
|
# Concatenate based on the specified direction
|
|
if direction == 'right':
|
|
concatenated_image = torch.cat((image1, image2_resized), dim=2) # Concatenate along width
|
|
elif direction == 'down':
|
|
concatenated_image = torch.cat((image1, image2_resized), dim=1) # Concatenate along height
|
|
elif direction == 'left':
|
|
concatenated_image = torch.cat((image2_resized, image1), dim=2) # Concatenate along width
|
|
elif direction == 'up':
|
|
concatenated_image = torch.cat((image2_resized, image1), dim=1) # Concatenate along height
|
|
return concatenated_image,
|
|
|
|
class ImageGridComposite2x2:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"image1": ("IMAGE",),
|
|
"image2": ("IMAGE",),
|
|
"image3": ("IMAGE",),
|
|
"image4": ("IMAGE",),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "compositegrid"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Concatenates the 4 input images into a 2x2 grid.
|
|
"""
|
|
|
|
def compositegrid(self, image1, image2, image3, image4):
|
|
top_row = torch.cat((image1, image2), dim=2)
|
|
bottom_row = torch.cat((image3, image4), dim=2)
|
|
grid = torch.cat((top_row, bottom_row), dim=1)
|
|
return (grid,)
|
|
|
|
class ImageGridComposite3x3:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"image1": ("IMAGE",),
|
|
"image2": ("IMAGE",),
|
|
"image3": ("IMAGE",),
|
|
"image4": ("IMAGE",),
|
|
"image5": ("IMAGE",),
|
|
"image6": ("IMAGE",),
|
|
"image7": ("IMAGE",),
|
|
"image8": ("IMAGE",),
|
|
"image9": ("IMAGE",),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "compositegrid"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Concatenates the 9 input images into a 3x3 grid.
|
|
"""
|
|
|
|
def compositegrid(self, image1, image2, image3, image4, image5, image6, image7, image8, image9):
|
|
top_row = torch.cat((image1, image2, image3), dim=2)
|
|
mid_row = torch.cat((image4, image5, image6), dim=2)
|
|
bottom_row = torch.cat((image7, image8, image9), dim=2)
|
|
grid = torch.cat((top_row, mid_row, bottom_row), dim=1)
|
|
return (grid,)
|
|
|
|
class ImageBatchTestPattern:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"batch_size": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
|
|
"start_from": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
|
|
"text_x": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
|
|
"text_y": ("INT", {"default": 256,"min": 0, "max": 4096, "step": 1}),
|
|
"width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
|
|
"height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
|
|
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
|
|
"font_size": ("INT", {"default": 255,"min": 8, "max": 4096, "step": 1}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "generatetestpattern"
|
|
CATEGORY = "KJNodes/text"
|
|
|
|
def generatetestpattern(self, batch_size, font, font_size, start_from, width, height, text_x, text_y):
|
|
out = []
|
|
# Generate the sequential numbers for each image
|
|
numbers = np.arange(start_from, start_from + batch_size)
|
|
font_path = folder_paths.get_full_path("kjnodes_fonts", font)
|
|
|
|
for number in numbers:
|
|
# Create a black image with the number as a random color text
|
|
image = Image.new("RGB", (width, height), color='black')
|
|
draw = ImageDraw.Draw(image)
|
|
|
|
# Generate a random color for the text
|
|
font_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
|
|
|
|
font = ImageFont.truetype(font_path, font_size)
|
|
|
|
# Get the size of the text and position it in the center
|
|
text = str(number)
|
|
|
|
try:
|
|
draw.text((text_x, text_y), text, font=font, fill=font_color, features=['-liga'])
|
|
except:
|
|
draw.text((text_x, text_y), text, font=font, fill=font_color,)
|
|
|
|
# Convert the image to a numpy array and normalize the pixel values
|
|
image_np = np.array(image).astype(np.float32) / 255.0
|
|
image_tensor = torch.from_numpy(image_np).unsqueeze(0)
|
|
out.append(image_tensor)
|
|
out_tensor = torch.cat(out, dim=0)
|
|
|
|
return (out_tensor,)
|
|
|
|
class ImageGrabPIL:
|
|
|
|
@classmethod
|
|
def IS_CHANGED(cls):
|
|
|
|
return
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("image",)
|
|
FUNCTION = "screencap"
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRIPTION = """
|
|
Captures an area specified by screen coordinates.
|
|
Can be used for realtime diffusion with autoqueue.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
|
|
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}),
|
|
},
|
|
}
|
|
|
|
def screencap(self, x, y, width, height, num_frames, delay):
|
|
start_time = time.time()
|
|
captures = []
|
|
bbox = (x, y, x + width, y + height)
|
|
|
|
for _ in range(num_frames):
|
|
# Capture screen
|
|
screen_capture = ImageGrab.grab(bbox=bbox)
|
|
screen_capture_torch = torch.from_numpy(np.array(screen_capture, dtype=np.float32) / 255.0).unsqueeze(0)
|
|
captures.append(screen_capture_torch)
|
|
|
|
# Wait for a short delay if more than one frame is to be captured
|
|
if num_frames > 1:
|
|
time.sleep(delay)
|
|
|
|
elapsed_time = time.time() - start_time
|
|
print(f"screengrab took {elapsed_time} seconds.")
|
|
|
|
return (torch.cat(captures, dim=0),)
|
|
|
|
class Screencap_mss:
|
|
|
|
@classmethod
|
|
def IS_CHANGED(cls):
|
|
|
|
return
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("image",)
|
|
FUNCTION = "screencap"
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRIPTION = """
|
|
Captures an area specified by screen coordinates.
|
|
Can be used for realtime diffusion with autoqueue.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
|
|
"delay": ("FLOAT", {"default": 0.1,"min": 0.0, "max": 10.0, "step": 0.01}),
|
|
},
|
|
}
|
|
|
|
def screencap(self, x, y, width, height, num_frames, delay):
|
|
from mss import mss
|
|
captures = []
|
|
with mss() as sct:
|
|
bbox = {'top': y, 'left': x, 'width': width, 'height': height}
|
|
|
|
for _ in range(num_frames):
|
|
sct_img = sct.grab(bbox)
|
|
img_np = np.array(sct_img)
|
|
img_torch = torch.from_numpy(img_np[..., [2, 1, 0]]).float() / 255.0
|
|
captures.append(img_torch)
|
|
|
|
if num_frames > 1:
|
|
time.sleep(delay)
|
|
|
|
return (torch.stack(captures, 0),)
|
|
|
|
class WebcamCaptureCV2:
|
|
|
|
@classmethod
|
|
def IS_CHANGED(cls):
|
|
return
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("image",)
|
|
FUNCTION = "capture"
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCRIPTION = """
|
|
Captures a frame from a webcam using CV2.
|
|
Can be used for realtime diffusion with autoqueue.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"x": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
"y": ("INT", {"default": 0,"min": 0, "max": 4096, "step": 1}),
|
|
"width": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
"height": ("INT", {"default": 512,"min": 0, "max": 4096, "step": 1}),
|
|
"cam_index": ("INT", {"default": 0,"min": 0, "max": 255, "step": 1}),
|
|
"release": ("BOOLEAN", {"default": False}),
|
|
},
|
|
}
|
|
|
|
def capture(self, x, y, cam_index, width, height, release):
|
|
# Check if the camera index has changed or the capture object doesn't exist
|
|
if not hasattr(self, "cap") or self.cap is None or self.current_cam_index != cam_index:
|
|
if hasattr(self, "cap") and self.cap is not None:
|
|
self.cap.release()
|
|
self.current_cam_index = cam_index
|
|
self.cap = cv2.VideoCapture(cam_index)
|
|
try:
|
|
self.cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
|
|
self.cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
|
|
except:
|
|
pass
|
|
if not self.cap.isOpened():
|
|
raise Exception("Could not open webcam")
|
|
|
|
ret, frame = self.cap.read()
|
|
if not ret:
|
|
raise Exception("Failed to capture image from webcam")
|
|
|
|
# Crop the frame to the specified bbox
|
|
frame = frame[y:y+height, x:x+width]
|
|
img_torch = torch.from_numpy(frame[..., [2, 1, 0]]).float() / 255.0
|
|
|
|
if release:
|
|
self.cap.release()
|
|
self.cap = None
|
|
|
|
return (img_torch.unsqueeze(0),)
|
|
|
|
class AddLabel:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"image":("IMAGE",),
|
|
"text_x": ("INT", {"default": 10, "min": 0, "max": 4096, "step": 1}),
|
|
"text_y": ("INT", {"default": 2, "min": 0, "max": 4096, "step": 1}),
|
|
"height": ("INT", {"default": 48, "min": 0, "max": 4096, "step": 1}),
|
|
"font_size": ("INT", {"default": 32, "min": 0, "max": 4096, "step": 1}),
|
|
"font_color": ("STRING", {"default": "white"}),
|
|
"label_color": ("STRING", {"default": "black"}),
|
|
"font": (folder_paths.get_filename_list("kjnodes_fonts"), ),
|
|
"text": ("STRING", {"default": "Text"}),
|
|
"direction": (
|
|
[ 'up',
|
|
'down',
|
|
'left',
|
|
'right',
|
|
'overlay'
|
|
],
|
|
{
|
|
"default": 'up'
|
|
}),
|
|
},
|
|
"optional":{
|
|
"caption": ("STRING", {"default": "", "forceInput": True}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "addlabel"
|
|
CATEGORY = "KJNodes/text"
|
|
DESCRIPTION = """
|
|
Creates a new with the given text, and concatenates it to
|
|
either above or below the input image.
|
|
Note that this changes the input image's height!
|
|
Fonts are loaded from this folder:
|
|
ComfyUI/custom_nodes/ComfyUI-KJNodes/fonts
|
|
"""
|
|
|
|
def addlabel(self, image, text_x, text_y, text, height, font_size, font_color, label_color, font, direction, caption=""):
|
|
batch_size = image.shape[0]
|
|
width = image.shape[2]
|
|
|
|
font_path = os.path.join(script_directory, "fonts", "TTNorms-Black.otf") if font == "TTNorms-Black.otf" else folder_paths.get_full_path("kjnodes_fonts", font)
|
|
|
|
def process_image(input_image, caption_text):
|
|
if direction == 'overlay':
|
|
pil_image = Image.fromarray((input_image.cpu().numpy() * 255).astype(np.uint8))
|
|
else:
|
|
label_image = Image.new("RGB", (width, height), label_color)
|
|
pil_image = label_image
|
|
|
|
draw = ImageDraw.Draw(pil_image)
|
|
font = ImageFont.truetype(font_path, font_size)
|
|
|
|
words = caption_text.split()
|
|
|
|
lines = []
|
|
current_line = []
|
|
current_line_width = 0
|
|
for word in words:
|
|
word_width = font.getbbox(word)[2]
|
|
if current_line_width + word_width <= width - 2 * text_x:
|
|
current_line.append(word)
|
|
current_line_width += word_width + font.getbbox(" ")[2] # Add space width
|
|
else:
|
|
lines.append(" ".join(current_line))
|
|
current_line = [word]
|
|
current_line_width = word_width
|
|
|
|
if current_line:
|
|
lines.append(" ".join(current_line))
|
|
|
|
y_offset = text_y
|
|
for line in lines:
|
|
try:
|
|
draw.text((text_x, y_offset), line, font=font, fill=font_color, features=['-liga'])
|
|
except:
|
|
draw.text((text_x, y_offset), line, font=font, fill=font_color)
|
|
y_offset += font_size # Move to the next line
|
|
|
|
processed_image = torch.from_numpy(np.array(pil_image).astype(np.float32) / 255.0).unsqueeze(0)
|
|
return processed_image
|
|
|
|
if caption == "":
|
|
processed_images = [process_image(img, text) for img in image]
|
|
else:
|
|
assert len(caption) == batch_size, "Number of captions does not match number of images"
|
|
processed_images = [process_image(img, cap) for img, cap in zip(image, caption)]
|
|
processed_batch = torch.cat(processed_images, dim=0)
|
|
|
|
# Combine images based on direction
|
|
if direction == 'down':
|
|
combined_images = torch.cat((image, processed_batch), dim=1)
|
|
elif direction == 'up':
|
|
combined_images = torch.cat((processed_batch, image), dim=1)
|
|
elif direction == 'left':
|
|
processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2)
|
|
combined_images = torch.cat((processed_batch, image), dim=2)
|
|
elif direction == 'right':
|
|
processed_batch = torch.rot90(processed_batch, 3, (2, 3)).permute(0, 3, 1, 2)
|
|
combined_images = torch.cat((image, processed_batch), dim=2)
|
|
else:
|
|
combined_images = processed_batch
|
|
|
|
return (combined_images,)
|
|
|
|
class GetImageSizeAndCount:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"image": ("IMAGE",),
|
|
}}
|
|
|
|
RETURN_TYPES = ("IMAGE","INT", "INT", "INT",)
|
|
RETURN_NAMES = ("image", "width", "height", "count",)
|
|
FUNCTION = "getsize"
|
|
CATEGORY = "KJNodes/masking"
|
|
DESCRIPTION = """
|
|
Returns width, height and batch size of the image,
|
|
and passes it through unchanged.
|
|
|
|
"""
|
|
|
|
def getsize(self, image):
|
|
width = image.shape[2]
|
|
height = image.shape[1]
|
|
count = image.shape[0]
|
|
return {"ui": {
|
|
"text": [f"{count}x{width}x{height}"]},
|
|
"result": (image, width, height, count)
|
|
}
|
|
|
|
class ImageBatchRepeatInterleaving:
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "repeat"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Repeats each image in a batch by the specified number of times.
|
|
Example batch of 5 images: 0, 1 ,2, 3, 4
|
|
with repeats 2 becomes batch of 10 images: 0, 0, 1, 1, 2, 2, 3, 3, 4, 4
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"images": ("IMAGE",),
|
|
"repeats": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
},
|
|
}
|
|
|
|
def repeat(self, images, repeats):
|
|
|
|
repeated_images = torch.repeat_interleave(images, repeats=repeats, dim=0)
|
|
return (repeated_images, )
|
|
|
|
class ImageUpscaleWithModelBatched:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "upscale_model": ("UPSCALE_MODEL",),
|
|
"images": ("IMAGE",),
|
|
"per_batch": ("INT", {"default": 16, "min": 1, "max": 4096, "step": 1}),
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "upscale"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Same as ComfyUI native model upscaling node,
|
|
but allows setting sub-batches for reduced VRAM usage.
|
|
"""
|
|
def upscale(self, upscale_model, images, per_batch):
|
|
|
|
device = model_management.get_torch_device()
|
|
upscale_model.to(device)
|
|
in_img = images.movedim(-1,-3)
|
|
|
|
steps = in_img.shape[0]
|
|
pbar = ProgressBar(steps)
|
|
t = []
|
|
|
|
for start_idx in range(0, in_img.shape[0], per_batch):
|
|
sub_images = upscale_model(in_img[start_idx:start_idx+per_batch].to(device))
|
|
t.append(sub_images.cpu())
|
|
# Calculate the number of images processed in this batch
|
|
batch_count = sub_images.shape[0]
|
|
# Update the progress bar by the number of images processed in this batch
|
|
pbar.update(batch_count)
|
|
upscale_model.cpu()
|
|
|
|
t = torch.cat(t, dim=0).permute(0, 2, 3, 1).cpu()
|
|
|
|
return (t,)
|
|
|
|
class ImageNormalize_Neg1_To_1:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"images": ("IMAGE",),
|
|
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "normalize"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Normalize the images to be in the range [-1, 1]
|
|
"""
|
|
|
|
def normalize(self,images):
|
|
images = images * 2.0 - 1.0
|
|
return (images,)
|
|
|
|
class RemapImageRange:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"image": ("IMAGE",),
|
|
"min": ("FLOAT", {"default": 0.0,"min": -10.0, "max": 1.0, "step": 0.01}),
|
|
"max": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"clamp": ("BOOLEAN", {"default": True}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "remap"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Remaps the image values to the specified range.
|
|
"""
|
|
|
|
def remap(self, image, min, max, clamp):
|
|
if image.dtype == torch.float16:
|
|
image = image.to(torch.float32)
|
|
image = min + image * (max - min)
|
|
if clamp:
|
|
image = torch.clamp(image, min=0.0, max=1.0)
|
|
return (image, )
|
|
|
|
class SplitImageChannels:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"image": ("IMAGE",),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "MASK")
|
|
RETURN_NAMES = ("red", "green", "blue", "mask")
|
|
FUNCTION = "split"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Splits image channels into images where the selected channel
|
|
is repeated for all channels, and the alpha as a mask.
|
|
"""
|
|
|
|
def split(self, image):
|
|
red = image[:, :, :, 0:1] # Red channel
|
|
green = image[:, :, :, 1:2] # Green channel
|
|
blue = image[:, :, :, 2:3] # Blue channel
|
|
alpha = image[:, :, :, 3:4] # Alpha channel
|
|
alpha = alpha.squeeze(-1)
|
|
|
|
# Repeat the selected channel for all channels
|
|
red = torch.cat([red, red, red], dim=3)
|
|
green = torch.cat([green, green, green], dim=3)
|
|
blue = torch.cat([blue, blue, blue], dim=3)
|
|
return (red, green, blue, alpha)
|
|
|
|
class MergeImageChannels:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"red": ("IMAGE",),
|
|
"green": ("IMAGE",),
|
|
"blue": ("IMAGE",),
|
|
|
|
},
|
|
"optional": {
|
|
"alpha": ("MASK", {"default": None}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("image",)
|
|
FUNCTION = "merge"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Merges channel data into an image.
|
|
"""
|
|
|
|
def merge(self, red, green, blue, alpha=None):
|
|
image = torch.stack([
|
|
red[..., 0, None], # Red channel
|
|
green[..., 1, None], # Green channel
|
|
blue[..., 2, None] # Blue channel
|
|
], dim=-1)
|
|
image = image.squeeze(-2)
|
|
if alpha is not None:
|
|
image = torch.cat([image, alpha.unsqueeze(-1)], dim=-1)
|
|
return (image,)
|
|
|
|
class ImagePadForOutpaintMasked:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
},
|
|
"optional": {
|
|
"mask": ("MASK",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK")
|
|
FUNCTION = "expand_image"
|
|
|
|
CATEGORY = "image"
|
|
|
|
def expand_image(self, image, left, top, right, bottom, feathering, mask=None):
|
|
if mask is not None:
|
|
if torch.allclose(mask, torch.zeros_like(mask)):
|
|
print("Warning: The incoming mask is fully black. Handling it as None.")
|
|
mask = None
|
|
B, H, W, C = image.size()
|
|
|
|
new_image = torch.ones(
|
|
(B, H + top + bottom, W + left + right, C),
|
|
dtype=torch.float32,
|
|
) * 0.5
|
|
|
|
new_image[:, top:top + H, left:left + W, :] = image
|
|
|
|
if mask is None:
|
|
new_mask = torch.ones(
|
|
(B, H + top + bottom, W + left + right),
|
|
dtype=torch.float32,
|
|
)
|
|
|
|
t = torch.zeros(
|
|
(B, H, W),
|
|
dtype=torch.float32
|
|
)
|
|
else:
|
|
# If a mask is provided, pad it to fit the new image size
|
|
mask = F.pad(mask, (left, right, top, bottom), mode='constant', value=0)
|
|
mask = 1 - mask
|
|
t = torch.zeros_like(mask)
|
|
|
|
if feathering > 0 and feathering * 2 < H and feathering * 2 < W:
|
|
|
|
for i in range(H):
|
|
for j in range(W):
|
|
dt = i if top != 0 else H
|
|
db = H - i if bottom != 0 else H
|
|
|
|
dl = j if left != 0 else W
|
|
dr = W - j if right != 0 else W
|
|
|
|
d = min(dt, db, dl, dr)
|
|
|
|
if d >= feathering:
|
|
continue
|
|
|
|
v = (feathering - d) / feathering
|
|
|
|
if mask is None:
|
|
t[:, i, j] = v * v
|
|
else:
|
|
t[:, top + i, left + j] = v * v
|
|
|
|
if mask is None:
|
|
new_mask[:, top:top + H, left:left + W] = t
|
|
return (new_image, new_mask,)
|
|
else:
|
|
return (new_image, mask,)
|
|
|
|
class ImagePadForOutpaintTargetSize:
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"target_width": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"target_height": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"feathering": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
"upscale_method": (s.upscale_methods,),
|
|
},
|
|
"optional": {
|
|
"mask": ("MASK",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK")
|
|
FUNCTION = "expand_image"
|
|
|
|
CATEGORY = "image"
|
|
|
|
def expand_image(self, image, target_width, target_height, feathering, upscale_method, mask=None):
|
|
B, H, W, C = image.size()
|
|
new_height = 0
|
|
new_width = 0
|
|
# Calculate the scaling factor while maintaining aspect ratio
|
|
scaling_factor = min(target_width / W, target_height / H)
|
|
|
|
# Check if the image needs to be downscaled
|
|
if scaling_factor < 1:
|
|
image = image.movedim(-1,1)
|
|
# Calculate the new width and height after downscaling
|
|
new_width = int(W * scaling_factor)
|
|
new_height = int(H * scaling_factor)
|
|
|
|
# Downscale the image
|
|
image_scaled = common_upscale(image, new_width, new_height, upscale_method, "disabled").movedim(1,-1)
|
|
if mask is not None:
|
|
mask_scaled = mask.unsqueeze(0) # Add an extra dimension for batch size
|
|
mask_scaled = F.interpolate(mask_scaled, size=(new_height, new_width), mode="nearest")
|
|
mask_scaled = mask_scaled.squeeze(0) # Remove the extra dimension after interpolation
|
|
else:
|
|
mask_scaled = mask
|
|
else:
|
|
# If downscaling is not needed, use the original image dimensions
|
|
image_scaled = image
|
|
mask_scaled = mask
|
|
|
|
# Calculate how much padding is needed to reach the target dimensions
|
|
pad_top = max(0, (target_height - new_height) // 2)
|
|
pad_bottom = max(0, target_height - new_height - pad_top)
|
|
pad_left = max(0, (target_width - new_width) // 2)
|
|
pad_right = max(0, target_width - new_width - pad_left)
|
|
|
|
# Now call the original expand_image with the calculated padding
|
|
return ImagePadForOutpaintMasked.expand_image(self, image_scaled, pad_left, pad_top, pad_right, pad_bottom, feathering, mask_scaled)
|
|
|
|
class ImageAndMaskPreview(SaveImage):
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_temp_directory()
|
|
self.type = "temp"
|
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
|
self.compress_level = 4
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"mask_opacity": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"mask_color": ("STRING", {"default": "255, 255, 255"}),
|
|
"pass_through": ("BOOLEAN", {"default": False}),
|
|
},
|
|
"optional": {
|
|
"image": ("IMAGE",),
|
|
"mask": ("MASK",),
|
|
},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("composite",)
|
|
FUNCTION = "execute"
|
|
CATEGORY = "KJNodes"
|
|
DESCRIPTION = """
|
|
Preview an image or a mask, when both inputs are used
|
|
composites the mask on top of the image.
|
|
with pass_through on the preview is disabled and the
|
|
composite is returned from the composite slot instead,
|
|
this allows for the preview to be passed for video combine
|
|
nodes for example.
|
|
"""
|
|
|
|
def execute(self, mask_opacity, mask_color, pass_through, filename_prefix="ComfyUI", image=None, mask=None, prompt=None, extra_pnginfo=None):
|
|
if mask is not None and image is None:
|
|
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
|
elif mask is None and image is not None:
|
|
preview = image
|
|
elif mask is not None and image is not None:
|
|
mask_adjusted = mask * mask_opacity
|
|
mask_image = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3).clone()
|
|
|
|
if ',' in mask_color:
|
|
color_list = np.clip([int(channel) for channel in mask_color.split(',')], 0, 255) # RGB format
|
|
else:
|
|
mask_color = mask_color.lstrip('#')
|
|
color_list = [int(mask_color[i:i+2], 16) for i in (0, 2, 4)] # Hex format
|
|
mask_image[:, :, :, 0] = color_list[0] / 255 # Red channel
|
|
mask_image[:, :, :, 1] = color_list[1] / 255 # Green channel
|
|
mask_image[:, :, :, 2] = color_list[2] / 255 # Blue channel
|
|
|
|
preview, = ImageCompositeMasked.composite(self, image, mask_image, 0, 0, True, mask_adjusted)
|
|
if pass_through:
|
|
return (preview, )
|
|
return(self.save_images(preview, filename_prefix, prompt, extra_pnginfo))
|
|
|
|
class CrossFadeImages:
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "crossfadeimages"
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"images_1": ("IMAGE",),
|
|
"images_2": ("IMAGE",),
|
|
"interpolation": (["linear", "ease_in", "ease_out", "ease_in_out", "bounce", "elastic", "glitchy", "exponential_ease_out"],),
|
|
"transition_start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
"transitioning_frames": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
"start_level": ("FLOAT", {"default": 0.0,"min": 0.0, "max": 1.0, "step": 0.01}),
|
|
"end_level": ("FLOAT", {"default": 1.0,"min": 0.0, "max": 1.0, "step": 0.01}),
|
|
},
|
|
}
|
|
|
|
def crossfadeimages(self, images_1, images_2, transition_start_index, transitioning_frames, interpolation, start_level, end_level):
|
|
|
|
def crossfade(images_1, images_2, alpha):
|
|
crossfade = (1 - alpha) * images_1 + alpha * images_2
|
|
return crossfade
|
|
def ease_in(t):
|
|
return t * t
|
|
def ease_out(t):
|
|
return 1 - (1 - t) * (1 - t)
|
|
def ease_in_out(t):
|
|
return 3 * t * t - 2 * t * t * t
|
|
def bounce(t):
|
|
if t < 0.5:
|
|
return self.ease_out(t * 2) * 0.5
|
|
else:
|
|
return self.ease_in((t - 0.5) * 2) * 0.5 + 0.5
|
|
def elastic(t):
|
|
return math.sin(13 * math.pi / 2 * t) * math.pow(2, 10 * (t - 1))
|
|
def glitchy(t):
|
|
return t + 0.1 * math.sin(40 * t)
|
|
def exponential_ease_out(t):
|
|
return 1 - (1 - t) ** 4
|
|
|
|
easing_functions = {
|
|
"linear": lambda t: t,
|
|
"ease_in": ease_in,
|
|
"ease_out": ease_out,
|
|
"ease_in_out": ease_in_out,
|
|
"bounce": bounce,
|
|
"elastic": elastic,
|
|
"glitchy": glitchy,
|
|
"exponential_ease_out": exponential_ease_out,
|
|
}
|
|
|
|
crossfade_images = []
|
|
|
|
alphas = torch.linspace(start_level, end_level, transitioning_frames)
|
|
for i in range(transitioning_frames):
|
|
alpha = alphas[i]
|
|
image1 = images_1[i + transition_start_index]
|
|
image2 = images_2[i + transition_start_index]
|
|
easing_function = easing_functions.get(interpolation)
|
|
alpha = easing_function(alpha) # Apply the easing function to the alpha value
|
|
|
|
crossfade_image = crossfade(image1, image2, alpha)
|
|
crossfade_images.append(crossfade_image)
|
|
|
|
# Convert crossfade_images to tensor
|
|
crossfade_images = torch.stack(crossfade_images, dim=0)
|
|
# Get the last frame result of the interpolation
|
|
last_frame = crossfade_images[-1]
|
|
# Calculate the number of remaining frames from images_2
|
|
remaining_frames = len(images_2) - (transition_start_index + transitioning_frames)
|
|
# Crossfade the remaining frames with the last used alpha value
|
|
for i in range(remaining_frames):
|
|
alpha = alphas[-1]
|
|
image1 = images_1[i + transition_start_index + transitioning_frames]
|
|
image2 = images_2[i + transition_start_index + transitioning_frames]
|
|
easing_function = easing_functions.get(interpolation)
|
|
alpha = easing_function(alpha) # Apply the easing function to the alpha value
|
|
|
|
crossfade_image = crossfade(image1, image2, alpha)
|
|
crossfade_images = torch.cat([crossfade_images, crossfade_image.unsqueeze(0)], dim=0)
|
|
# Append the beginning of images_1
|
|
beginning_images_1 = images_1[:transition_start_index]
|
|
crossfade_images = torch.cat([beginning_images_1, crossfade_images], dim=0)
|
|
return (crossfade_images, )
|
|
|
|
class GetImageRangeFromBatch:
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", )
|
|
FUNCTION = "imagesfrombatch"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Creates a new batch using images from the input,
|
|
batch, starting from start_index.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"start_index": ("INT", {"default": 0,"min": -1, "max": 4096, "step": 1}),
|
|
"num_frames": ("INT", {"default": 1,"min": 1, "max": 4096, "step": 1}),
|
|
},
|
|
"optional": {
|
|
"images": ("IMAGE",),
|
|
"masks": ("MASK",),
|
|
}
|
|
}
|
|
|
|
def imagesfrombatch(self, start_index, num_frames, images=None, masks=None):
|
|
|
|
chosen_images = None
|
|
chosen_masks = None
|
|
|
|
# Process images if provided
|
|
if images is not None:
|
|
if start_index == -1:
|
|
start_index = len(images) - num_frames
|
|
if start_index < 0 or start_index >= len(images):
|
|
raise ValueError("Start index is out of range")
|
|
end_index = start_index + num_frames
|
|
if end_index > len(images):
|
|
raise ValueError("End index is out of range")
|
|
chosen_images = images[start_index:end_index]
|
|
|
|
# Process masks if provided
|
|
if masks is not None:
|
|
if start_index == -1:
|
|
start_index = len(masks) - num_frames
|
|
if start_index < 0 or start_index >= len(masks):
|
|
raise ValueError("Start index is out of range for masks")
|
|
end_index = start_index + num_frames
|
|
if end_index > len(masks):
|
|
raise ValueError("End index is out of range for masks")
|
|
chosen_masks = masks[start_index:end_index]
|
|
|
|
return (chosen_images, chosen_masks,)
|
|
|
|
class GetImagesFromBatchIndexed:
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "indexedimagesfrombatch"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Selects and returns the images at the specified indices as an image batch.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"images": ("IMAGE",),
|
|
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
|
|
},
|
|
}
|
|
|
|
def indexedimagesfrombatch(self, images, indexes):
|
|
|
|
# Parse the indexes string into a list of integers
|
|
index_list = [int(index.strip()) for index in indexes.split(',')]
|
|
|
|
# Convert list of indices to a PyTorch tensor
|
|
indices_tensor = torch.tensor(index_list, dtype=torch.long)
|
|
|
|
# Select the images at the specified indices
|
|
chosen_images = images[indices_tensor]
|
|
|
|
return (chosen_images,)
|
|
|
|
class InsertImagesToBatchIndexed:
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "insertimagesfrombatch"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Inserts images at the specified indices into the original image batch.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"original_images": ("IMAGE",),
|
|
"images_to_insert": ("IMAGE",),
|
|
"indexes": ("STRING", {"default": "0, 1, 2", "multiline": True}),
|
|
},
|
|
}
|
|
|
|
def insertimagesfrombatch(self, original_images, images_to_insert, indexes):
|
|
|
|
# Parse the indexes string into a list of integers
|
|
index_list = [int(index.strip()) for index in indexes.split(',')]
|
|
|
|
# Convert list of indices to a PyTorch tensor
|
|
indices_tensor = torch.tensor(index_list, dtype=torch.long)
|
|
|
|
# Ensure the images_to_insert is a tensor
|
|
if not isinstance(images_to_insert, torch.Tensor):
|
|
images_to_insert = torch.tensor(images_to_insert)
|
|
|
|
# Insert the images at the specified indices
|
|
for index, image in zip(indices_tensor, images_to_insert):
|
|
original_images[index] = image
|
|
|
|
return (original_images,)
|
|
|
|
class ReplaceImagesInBatch:
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "replace"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Replaces the images in a batch, starting from the specified start index,
|
|
with the replacement images.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"original_images": ("IMAGE",),
|
|
"replacement_images": ("IMAGE",),
|
|
"start_index": ("INT", {"default": 1,"min": 0, "max": 4096, "step": 1}),
|
|
},
|
|
}
|
|
|
|
def replace(self, original_images, replacement_images, start_index):
|
|
images = None
|
|
if start_index >= len(original_images):
|
|
raise ValueError("GetImageRangeFromBatch: Start index is out of range")
|
|
end_index = start_index + len(replacement_images)
|
|
if end_index > len(original_images):
|
|
raise ValueError("GetImageRangeFromBatch: End index is out of range")
|
|
# Create a copy of the original_images tensor
|
|
original_images_copy = original_images.clone()
|
|
original_images_copy[start_index:end_index] = replacement_images
|
|
images = original_images_copy
|
|
return (images, )
|
|
|
|
|
|
class ReverseImageBatch:
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "reverseimagebatch"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Reverses the order of the images in a batch.
|
|
"""
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"images": ("IMAGE",),
|
|
},
|
|
}
|
|
|
|
def reverseimagebatch(self, images):
|
|
reversed_images = torch.flip(images, [0])
|
|
return (reversed_images, )
|
|
|
|
class ImageBatchMulti:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
"image_1": ("IMAGE", ),
|
|
"image_2": ("IMAGE", ),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("images",)
|
|
FUNCTION = "combine"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Creates an image batch from multiple images.
|
|
You can set how many inputs the node has,
|
|
with the **inputcount** and clicking update.
|
|
"""
|
|
|
|
def combine(self, inputcount, **kwargs):
|
|
from nodes import ImageBatch
|
|
image_batch_node = ImageBatch()
|
|
image = kwargs["image_1"]
|
|
for c in range(1, inputcount):
|
|
new_image = kwargs[f"image_{c + 1}"]
|
|
image, = image_batch_node.batch(image, new_image)
|
|
return (image,)
|
|
|
|
class ImageAddMulti:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
"image_1": ("IMAGE", ),
|
|
"image_2": ("IMAGE", ),
|
|
"blending": (
|
|
[ 'add',
|
|
'subtract',
|
|
'multiply',
|
|
'difference',
|
|
],
|
|
{
|
|
"default": 'add'
|
|
}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("images",)
|
|
FUNCTION = "add"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Add blends multiple images together.
|
|
You can set how many inputs the node has,
|
|
with the **inputcount** and clicking update.
|
|
"""
|
|
|
|
def add(self, inputcount, blending, **kwargs):
|
|
image = kwargs["image_1"]
|
|
for c in range(1, inputcount):
|
|
new_image = kwargs[f"image_{c + 1}"]
|
|
if blending == "add":
|
|
image = torch.add(image * 0.5, new_image * 0.5)
|
|
elif blending == "subtract":
|
|
image = torch.sub(image * 0.5, new_image * 0.5)
|
|
elif blending == "multiply":
|
|
image = torch.mul(image * 0.5, new_image * 0.5)
|
|
elif blending == "difference":
|
|
image = torch.sub(image, new_image)
|
|
return (image,)
|
|
|
|
class ImageConcatMulti:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"inputcount": ("INT", {"default": 2, "min": 2, "max": 1000, "step": 1}),
|
|
"image_1": ("IMAGE", ),
|
|
"image_2": ("IMAGE", ),
|
|
"direction": (
|
|
[ 'right',
|
|
'down',
|
|
'left',
|
|
'up',
|
|
],
|
|
{
|
|
"default": 'right'
|
|
}),
|
|
"match_image_size": ("BOOLEAN", {"default": False}),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
RETURN_NAMES = ("images",)
|
|
FUNCTION = "combine"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Creates an image from multiple images.
|
|
You can set how many inputs the node has,
|
|
with the **inputcount** and clicking update.
|
|
"""
|
|
|
|
def combine(self, inputcount, direction, match_image_size, **kwargs):
|
|
image = kwargs["image_1"]
|
|
first_image_shape = None
|
|
if first_image_shape is None:
|
|
first_image_shape = image.shape
|
|
for c in range(1, inputcount):
|
|
new_image = kwargs[f"image_{c + 1}"]
|
|
image, = ImageConcanate.concanate(self, image, new_image, direction, match_image_size, first_image_shape=first_image_shape)
|
|
first_image_shape = None
|
|
return (image,)
|
|
|
|
class PreviewAnimation:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_temp_directory()
|
|
self.type = "temp"
|
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
|
self.compress_level = 1
|
|
|
|
methods = {"default": 4, "fastest": 0, "slowest": 6}
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{
|
|
"fps": ("FLOAT", {"default": 8.0, "min": 0.01, "max": 1000.0, "step": 0.01}),
|
|
},
|
|
"optional": {
|
|
"images": ("IMAGE", ),
|
|
"masks": ("MASK", ),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "preview"
|
|
OUTPUT_NODE = True
|
|
CATEGORY = "KJNodes/image"
|
|
|
|
def preview(self, fps, images=None, masks=None):
|
|
filename_prefix = "AnimPreview"
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
|
results = list()
|
|
|
|
pil_images = []
|
|
|
|
if images is not None and masks is not None:
|
|
for image in images:
|
|
i = 255. * image.cpu().numpy()
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
pil_images.append(img)
|
|
for mask in masks:
|
|
if pil_images:
|
|
mask_np = mask.cpu().numpy()
|
|
mask_np = np.clip(mask_np * 255, 0, 255).astype(np.uint8) # Convert to values between 0 and 255
|
|
mask_img = Image.fromarray(mask_np, mode='L')
|
|
img = pil_images.pop(0) # Remove and get the first image
|
|
img = img.convert("RGBA") # Convert base image to RGBA
|
|
|
|
# Create a new RGBA image based on the grayscale mask
|
|
rgba_mask_img = Image.new("RGBA", img.size, (255, 255, 255, 255))
|
|
rgba_mask_img.putalpha(mask_img) # Use the mask image as the alpha channel
|
|
|
|
# Composite the RGBA mask onto the base image
|
|
composited_img = Image.alpha_composite(img, rgba_mask_img)
|
|
pil_images.append(composited_img) # Add the composited image back
|
|
|
|
elif images is not None and masks is None:
|
|
for image in images:
|
|
i = 255. * image.cpu().numpy()
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
pil_images.append(img)
|
|
|
|
elif masks is not None and images is None:
|
|
for mask in masks:
|
|
mask_np = 255. * mask.cpu().numpy()
|
|
mask_img = Image.fromarray(np.clip(mask_np, 0, 255).astype(np.uint8))
|
|
pil_images.append(mask_img)
|
|
else:
|
|
print("PreviewAnimation: No images or masks provided")
|
|
return { "ui": { "images": results, "animated": (None,), "text": "empty" }}
|
|
|
|
num_frames = len(pil_images)
|
|
|
|
c = len(pil_images)
|
|
for i in range(0, c, num_frames):
|
|
file = f"{filename}_{counter:05}_.webp"
|
|
pil_images[i].save(os.path.join(full_output_folder, file), save_all=True, duration=int(1000.0/fps), append_images=pil_images[i + 1:i + num_frames], lossless=False, quality=80, method=4)
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": self.type
|
|
})
|
|
counter += 1
|
|
|
|
animated = num_frames != 1
|
|
return { "ui": { "images": results, "animated": (animated,), "text": [f"{num_frames}x{pil_images[0].size[0]}x{pil_images[0].size[1]}"] } }
|
|
|
|
class ImageResizeKJ:
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
"upscale_method": (s.upscale_methods,),
|
|
"keep_proportion": ("BOOLEAN", { "default": False }),
|
|
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
|
|
},
|
|
"optional" : {
|
|
"width_input": ("INT", { "forceInput": True}),
|
|
"height_input": ("INT", { "forceInput": True}),
|
|
"get_image_size": ("IMAGE",),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT",)
|
|
RETURN_NAMES = ("IMAGE", "width", "height",)
|
|
FUNCTION = "resize"
|
|
CATEGORY = "KJNodes/image"
|
|
DESCRIPTION = """
|
|
Resizes the image to the specified width and height.
|
|
Size can be retrieved from the inputs, and the final scale
|
|
is determined in this order of importance:
|
|
- get_image_size
|
|
- width_input and height_input
|
|
- width and height widgets
|
|
|
|
Keep proportions keeps the aspect ratio of the image, by
|
|
highest dimension.
|
|
"""
|
|
|
|
def resize(self, image, width, height, keep_proportion, upscale_method, divisible_by, width_input=None, height_input=None, get_image_size=None):
|
|
B, H, W, C = image.shape
|
|
if width_input:
|
|
width = width_input
|
|
if height_input:
|
|
height = height_input
|
|
if get_image_size is not None:
|
|
_, height, width, _ = get_image_size.shape
|
|
|
|
if keep_proportion and get_image_size is None:
|
|
# If one of the dimensions is zero, calculate it to maintain the aspect ratio
|
|
if width == 0 and height != 0:
|
|
ratio = height / H
|
|
width = round(W * ratio)
|
|
elif height == 0 and width != 0:
|
|
ratio = width / W
|
|
height = round(H * ratio)
|
|
elif width != 0 and height != 0:
|
|
# Scale based on which dimension is smaller in proportion to the desired dimensions
|
|
ratio = min(width / W, height / H)
|
|
width = round(W * ratio)
|
|
height = round(H * ratio)
|
|
else:
|
|
if width == 0:
|
|
width = W
|
|
if height == 0:
|
|
height = H
|
|
|
|
if divisible_by > 1 and get_image_size is None:
|
|
width = width - (width % divisible_by)
|
|
height = height - (height % divisible_by)
|
|
|
|
image = image.movedim(-1,1)
|
|
scaled = common_upscale(image, width, height, upscale_method, 'disabled')
|
|
scaled = scaled.movedim(1,-1)
|
|
|
|
return(scaled, scaled.shape[2], scaled.shape[1],)
|
|
|
|
class LoadAndResizeImage:
|
|
_color_channels = ["alpha", "red", "green", "blue"]
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
input_dir = folder_paths.get_input_directory()
|
|
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
|
return {"required":
|
|
{
|
|
"image": (sorted(files), {"image_upload": True}),
|
|
"resize": ("BOOLEAN", { "default": False }),
|
|
"width": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
"height": ("INT", { "default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8, }),
|
|
"repeat": ("INT", { "default": 1, "min": 1, "max": 4096, "step": 1, }),
|
|
"keep_proportion": ("BOOLEAN", { "default": False }),
|
|
"divisible_by": ("INT", { "default": 2, "min": 0, "max": 512, "step": 1, }),
|
|
"mask_channel": (s._color_channels, ),
|
|
},
|
|
}
|
|
|
|
CATEGORY = "KJNodes/image"
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT",)
|
|
RETURN_NAMES = ("image", "mask", "width", "height",)
|
|
FUNCTION = "load_image"
|
|
|
|
def load_image(self, image, resize, width, height, repeat, keep_proportion, divisible_by, mask_channel):
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
|
|
import node_helpers
|
|
img = node_helpers.pillow(Image.open, image_path)
|
|
|
|
output_images = []
|
|
output_masks = []
|
|
w, h = None, None
|
|
|
|
excluded_formats = ['MPO']
|
|
|
|
W, H = img.size
|
|
if resize:
|
|
if keep_proportion:
|
|
ratio = min(width / W, height / H)
|
|
width = round(W * ratio)
|
|
height = round(H * ratio)
|
|
else:
|
|
if width == 0:
|
|
width = W
|
|
if height == 0:
|
|
height = H
|
|
|
|
if divisible_by > 1:
|
|
width = width - (width % divisible_by)
|
|
height = height - (height % divisible_by)
|
|
else:
|
|
width, height = W, H
|
|
|
|
for i in ImageSequence.Iterator(img):
|
|
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
|
|
|
if i.mode == 'I':
|
|
i = i.point(lambda i: i * (1 / 255))
|
|
image = i.convert("RGB")
|
|
|
|
if len(output_images) == 0:
|
|
w = image.size[0]
|
|
h = image.size[1]
|
|
|
|
if image.size[0] != w or image.size[1] != h:
|
|
continue
|
|
if resize:
|
|
image = image.resize((width, height), Image.Resampling.BILINEAR)
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = torch.from_numpy(image)[None,]
|
|
mask = None
|
|
c = mask_channel[0].upper()
|
|
if c in i.getbands():
|
|
if resize:
|
|
i = i.resize((width, height), Image.Resampling.BILINEAR)
|
|
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
|
|
mask = torch.from_numpy(mask)
|
|
if c == 'A':
|
|
mask = 1. - mask
|
|
else:
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
|
|
|
output_images.append(image)
|
|
output_masks.append(mask.unsqueeze(0))
|
|
|
|
if len(output_images) > 1 and img.format not in excluded_formats:
|
|
output_image = torch.cat(output_images, dim=0)
|
|
output_mask = torch.cat(output_masks, dim=0)
|
|
else:
|
|
output_image = output_images[0]
|
|
output_mask = output_masks[0]
|
|
if repeat > 1:
|
|
output_image = output_image.repeat(repeat, 1, 1, 1)
|
|
output_mask = output_mask.repeat(repeat, 1, 1)
|
|
|
|
|
|
return (output_image, output_mask, width, height)
|
|
|
|
|
|
@classmethod
|
|
def IS_CHANGED(s, image):
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
m = hashlib.sha256()
|
|
with open(image_path, 'rb') as f:
|
|
m.update(f.read())
|
|
return m.digest().hex()
|
|
|
|
@classmethod
|
|
def VALIDATE_INPUTS(s, image):
|
|
if not folder_paths.exists_annotated_filepath(image):
|
|
return "Invalid image file: {}".format(image)
|
|
|
|
return True
|