ComfyUI-KJNodes/nodes/curve_nodes.py
2024-04-29 17:45:58 +03:00

600 lines
24 KiB
Python

import torch
import json
from PIL import Image, ImageDraw
import numpy as np
from ..utility.utility import pil2tensor
class SplineEditor:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"points_store": ("STRING", {"multiline": False}),
"coordinates": ("STRING", {"multiline": False}),
"mask_width": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 8}),
"mask_height": ("INT", {"default": 512, "min": 8, "max": 4096, "step": 8}),
"points_to_sample": ("INT", {"default": 16, "min": 2, "max": 1000, "step": 1}),
"sampling_method": (
[
'path',
'time',
],
{
"default": 'time'
}),
"interpolation": (
[
'cardinal',
'monotone',
'basis',
'linear',
'step-before',
'step-after',
'polar',
'polar-reverse',
],
{
"default": 'cardinal'
}),
"tension": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"repeat_output": ("INT", {"default": 1, "min": 1, "max": 4096, "step": 1}),
"float_output_type": (
[
'list',
'pandas series',
'tensor',
],
{
"default": 'list'
}),
},
"optional": {
"min_value": ("FLOAT", {"default": 0.0, "min": -10000.0, "max": 10000.0, "step": 0.01}),
"max_value": ("FLOAT", {"default": 1.0, "min": -10000.0, "max": 10000.0, "step": 0.01}),
}
}
RETURN_TYPES = ("MASK", "STRING", "FLOAT", "INT")
RETURN_NAMES = ("mask", "string", "float", "count")
FUNCTION = "splinedata"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
# WORK IN PROGRESS
Do not count on this as part of your workflow yet,
probably contains lots of bugs and stability is not
guaranteed!!
## Graphical editor to create values for various
## schedules and/or mask batches.
**Shift + click** to add control point at end.
**Ctrl + click** to add control point (subdivide) between two points.
**Right click on a point** to delete it.
Note that you can't delete from start/end.
Right click on canvas for context menu:
These are purely visual options, doesn't affect the output:
- Toggle handles visibility
- Display sample points: display the points to be returned.
**points_to_sample** value sets the number of samples
returned from the **drawn spline itself**, this is independent from the
actual control points, so the interpolation type matters.
sampling_method:
- time: samples along the time axis, used for schedules
- path: samples along the path itself, useful for coordinates
output types:
- mask batch
example compatible nodes: anything that takes masks
- list of floats
example compatible nodes: IPAdapter weights
- pandas series
example compatible nodes: anything that takes Fizz'
nodes Batch Value Schedule
- torch tensor
example compatible nodes: unknown
"""
def splinedata(self, mask_width, mask_height, coordinates, float_output_type, interpolation,
points_to_sample, sampling_method, points_store, tension, repeat_output, min_value=0.0, max_value=1.0):
coordinates = json.loads(coordinates)
for coord in coordinates:
coord['x'] = int(round(coord['x']))
coord['y'] = int(round(coord['y']))
normalized_y_values = [
(1.0 - (point['y'] / 512) - 0.0) * (max_value - min_value) + min_value
for point in coordinates
]
if float_output_type == 'list':
out_floats = normalized_y_values * repeat_output
elif float_output_type == 'pandas series':
try:
import pandas as pd
except:
raise Exception("MaskOrImageToWeight: pandas is not installed. Please install pandas to use this output_type")
out_floats = pd.Series(normalized_y_values * repeat_output),
elif float_output_type == 'tensor':
out_floats = torch.tensor(normalized_y_values * repeat_output, dtype=torch.float32)
# Create a color map for grayscale intensities
color_map = lambda y: torch.full((mask_height, mask_width, 3), y, dtype=torch.float32)
# Create image tensors for each normalized y value
mask_tensors = [color_map(y) for y in normalized_y_values]
masks_out = torch.stack(mask_tensors)
masks_out = masks_out.repeat(repeat_output, 1, 1, 1)
masks_out = masks_out.mean(dim=-1)
return (masks_out, str(coordinates), out_floats, len(out_floats))
class CreateShapeMaskOnPath:
RETURN_TYPES = ("MASK", "MASK",)
RETURN_NAMES = ("mask", "mask_inverted",)
FUNCTION = "createshapemask"
CATEGORY = "KJNodes/masking/generate"
DESCRIPTION = """
Creates a mask or batch of masks with the specified shape.
Locations are center locations.
Grow value is the amount to grow the shape on each frame, creating animated masks.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"shape": (
[ 'circle',
'square',
'triangle',
],
{
"default": 'circle'
}),
"coordinates": ("STRING", {"forceInput": True}),
"grow": ("INT", {"default": 0, "min": -512, "max": 512, "step": 1}),
"frame_width": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"frame_height": ("INT", {"default": 512,"min": 16, "max": 4096, "step": 1}),
"shape_width": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
"shape_height": ("INT", {"default": 128,"min": 8, "max": 4096, "step": 1}),
},
}
def createshapemask(self, coordinates, frame_width, frame_height, shape_width, shape_height, grow, shape):
# Define the number of images in the batch
coordinates = coordinates.replace("'", '"')
coordinates = json.loads(coordinates)
batch_size = len(coordinates)
out = []
color = "white"
for i, coord in enumerate(coordinates):
image = Image.new("RGB", (frame_width, frame_height), "black")
draw = ImageDraw.Draw(image)
# Calculate the size for this frame and ensure it's not less than 0
current_width = max(0, shape_width + i*grow)
current_height = max(0, shape_height + i*grow)
location_x = coord['x']
location_y = coord['y']
if shape == 'circle' or shape == 'square':
# Define the bounding box for the shape
left_up_point = (location_x - current_width // 2, location_y - current_height // 2)
right_down_point = (location_x + current_width // 2, location_y + current_height // 2)
two_points = [left_up_point, right_down_point]
if shape == 'circle':
draw.ellipse(two_points, fill=color)
elif shape == 'square':
draw.rectangle(two_points, fill=color)
elif shape == 'triangle':
# Define the points for the triangle
left_up_point = (location_x - current_width // 2, location_y + current_height // 2) # bottom left
right_down_point = (location_x + current_width // 2, location_y + current_height // 2) # bottom right
top_point = (location_x, location_y - current_height // 2) # top point
draw.polygon([top_point, left_up_point, right_down_point], fill=color)
image = pil2tensor(image)
mask = image[:, :, :, 0]
out.append(mask)
outstack = torch.cat(out, dim=0)
return (outstack, 1.0 - outstack,)
class MaskOrImageToWeight:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"output_type": (
[
'list',
'pandas series',
'tensor',
],
{
"default": 'list'
}),
},
"optional": {
"images": ("IMAGE",),
"masks": ("MASK",),
},
}
RETURN_TYPES = ("FLOAT",)
FUNCTION = "execute"
CATEGORY = "KJNodes"
DESCRIPTION = """
Gets the mean values from mask or image batch
and returns that as the selected output type.
"""
def execute(self, output_type, images=None, masks=None):
mean_values = []
if masks is not None and images is None:
for mask in masks:
mean_values.append(mask.mean().item())
elif masks is None and images is not None:
for image in images:
mean_values.append(image.mean().item())
elif masks is not None and images is not None:
raise Exception("MaskOrImageToWeight: Use either mask or image input only.")
# Convert mean_values to the specified output_type
if output_type == 'list':
return mean_values,
elif output_type == 'pandas series':
try:
import pandas as pd
except:
raise Exception("MaskOrImageToWeight: pandas is not installed. Please install pandas to use this output_type")
return pd.Series(mean_values),
elif output_type == 'tensor':
return torch.tensor(mean_values, dtype=torch.float32),
else:
raise ValueError(f"Unsupported output_type: {output_type}")
class WeightScheduleConvert:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_values": ("FLOAT", {"default": 0.0, "forceInput": True}),
"output_type": (
[
'match_input',
'list',
'pandas series',
'tensor',
],
{
"default": 'list'
}),
"invert": ("BOOLEAN", {"default": False}),
"repeat": ("INT", {"default": 1,"min": 1, "max": 255, "step": 1}),
},
"optional": {
"remap_to_frames": ("INT", {"default": 0}),
"interpolation_curve": ("FLOAT", {"forceInput": True}),
},
}
RETURN_TYPES = ("FLOAT",)
FUNCTION = "execute"
CATEGORY = "KJNodes"
DESCRIPTION = """
Converts different value lists/series to another type.
"""
def detect_input_type(self, input_values):
import pandas as pd
if isinstance(input_values, list):
return 'list'
elif isinstance(input_values, pd.Series):
return 'pandas series'
elif isinstance(input_values, torch.Tensor):
return 'tensor'
else:
raise ValueError("Unsupported input type")
def execute(self, input_values, output_type, invert, repeat, remap_to_frames=0, interpolation_curve=None):
import pandas as pd
input_type = self.detect_input_type(input_values)
if input_type == 'pandas series':
float_values = input_values.tolist()
elif input_type == 'tensor':
float_values = input_values
else:
float_values = input_values
if invert:
float_values = [1 - value for value in float_values]
if interpolation_curve is not None:
interpolated_pattern = []
orig_float_values = float_values
for value in interpolation_curve:
min_val = min(orig_float_values)
max_val = max(orig_float_values)
# Normalize the values to [0, 1]
normalized_values = [(value - min_val) / (max_val - min_val) for value in orig_float_values]
# Interpolate the normalized values to the new frame count
remapped_float_values = np.interp(np.linspace(0, 1, int(remap_to_frames * value)), np.linspace(0, 1, len(normalized_values)), normalized_values).tolist()
interpolated_pattern.extend(remapped_float_values)
float_values = interpolated_pattern
else:
# Remap float_values to match target_frame_amount
if remap_to_frames > 0 and remap_to_frames != len(float_values):
min_val = min(float_values)
max_val = max(float_values)
# Normalize the values to [0, 1]
normalized_values = [(value - min_val) / (max_val - min_val) for value in float_values]
# Interpolate the normalized values to the new frame count
float_values = np.interp(np.linspace(0, 1, remap_to_frames), np.linspace(0, 1, len(normalized_values)), normalized_values).tolist()
float_values = float_values * repeat
if output_type == 'list':
return float_values,
elif output_type == 'pandas series':
return pd.Series(float_values),
elif output_type == 'tensor':
if input_type == 'pandas series':
return torch.tensor(float_values.values, dtype=torch.float32),
else:
return torch.tensor(float_values, dtype=torch.float32),
elif output_type == 'match_input':
return float_values,
else:
raise ValueError(f"Unsupported output_type: {output_type}")
class FloatToMask:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_values": ("FLOAT", {"forceInput": True, "default": 0}),
"width": ("INT", {"default": 100, "min": 1}),
"height": ("INT", {"default": 100, "min": 1}),
},
}
RETURN_TYPES = ("MASK",)
FUNCTION = "execute"
CATEGORY = "KJNodes"
DESCRIPTION = """
Generates a batch of masks based on the input float values.
The batch size is determined by the length of the input float values.
Each mask is generated with the specified width and height.
"""
def execute(self, input_values, width, height):
import pandas as pd
# Ensure input_values is a list
if isinstance(input_values, (float, int)):
input_values = [input_values]
elif isinstance(input_values, pd.Series):
input_values = input_values.tolist()
elif isinstance(input_values, list) and all(isinstance(item, list) for item in input_values):
input_values = [item for sublist in input_values for item in sublist]
# Generate a batch of masks based on the input_values
masks = []
for value in input_values:
# Assuming value is a float between 0 and 1 representing the mask's intensity
mask = torch.ones((height, width), dtype=torch.float32) * value
masks.append(mask)
masks_out = torch.stack(masks, dim=0)
return(masks_out,)
class WeightScheduleExtend:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"input_values_1": ("FLOAT", {"default": 0.0, "forceInput": True}),
"input_values_2": ("FLOAT", {"default": 0.0, "forceInput": True}),
"output_type": (
[
'match_input',
'list',
'pandas series',
'tensor',
],
{
"default": 'match_input'
}),
},
}
RETURN_TYPES = ("FLOAT",)
FUNCTION = "execute"
CATEGORY = "KJNodes"
DESCRIPTION = """
Extends, and converts if needed, different value lists/series
"""
def detect_input_type(self, input_values):
import pandas as pd
if isinstance(input_values, list):
return 'list'
elif isinstance(input_values, pd.Series):
return 'pandas series'
elif isinstance(input_values, torch.Tensor):
return 'tensor'
else:
raise ValueError("Unsupported input type")
def execute(self, input_values_1, input_values_2, output_type):
import pandas as pd
input_type_1 = self.detect_input_type(input_values_1)
input_type_2 = self.detect_input_type(input_values_2)
# Convert input_values_2 to the same format as input_values_1 if they do not match
if not input_type_1 == input_type_2:
print("Converting input_values_2 to the same format as input_values_1")
if input_type_1 == 'pandas series':
# Convert input_values_2 to a pandas Series
float_values_2 = pd.Series(input_values_2)
elif input_type_1 == 'tensor':
# Convert input_values_2 to a tensor
float_values_2 = torch.tensor(input_values_2, dtype=torch.float32)
else:
print("Input types match, no conversion needed")
# If the types match, no conversion is needed
float_values_2 = input_values_2
float_values = input_values_1 + float_values_2
if output_type == 'list':
return float_values,
elif output_type == 'pandas series':
return pd.Series(float_values),
elif output_type == 'tensor':
if input_type_1 == 'pandas series':
return torch.tensor(float_values.values, dtype=torch.float32),
else:
return torch.tensor(float_values, dtype=torch.float32),
elif output_type == 'match_input':
return float_values,
else:
raise ValueError(f"Unsupported output_type: {output_type}")
class FloatToSigmas:
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"float_list": ("FLOAT", {"default": 0.0, "forceInput": True}),
}
}
RETURN_TYPES = ("SIGMAS",)
RETURN_NAMES = ("SIGMAS",)
CATEGORY = "KJNodes/noise"
FUNCTION = "customsigmas"
DESCRIPTION = """
Creates a sigmas tensor from list of float values.
"""
def customsigmas(self, float_list):
return torch.tensor(float_list, dtype=torch.float32),
class GLIGENTextBoxApplyBatchCoords:
@classmethod
def INPUT_TYPES(s):
return {"required": {"conditioning_to": ("CONDITIONING", ),
"latents": ("LATENT", ),
"clip": ("CLIP", ),
"gligen_textbox_model": ("GLIGEN", ),
"coordinates": ("STRING", {"forceInput": True}),
"text": ("STRING", {"multiline": True}),
"width": ("INT", {"default": 64, "min": 8, "max": 4096, "step": 8}),
"height": ("INT", {"default": 64, "min": 8, "max": 4096, "step": 8}),
},
}
RETURN_TYPES = ("CONDITIONING", "IMAGE", )
FUNCTION = "append"
CATEGORY = "KJNodes/experimental"
DESCRIPTION = """
Experimental, does not function yet as ComfyUI base changes are needed
"""
def append(self, latents, coordinates, conditioning_to, clip, gligen_textbox_model, text, width, height):
coordinates = json.loads(coordinates.replace("'", '"'))
coordinates = [(coord['x'], coord['y']) for coord in coordinates]
batch_size = sum(tensor.size(0) for tensor in latents.values())
assert len(coordinates) == batch_size, "The number of coordinates does not match the number of latents"
c = []
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
image_height = latents['samples'].shape[-1] * 8
image_width = latents['samples'].shape[-2] * 8
plot_image_tensor = self.plot_coordinates_to_tensor(coordinates, image_height, image_width, height)
for t in conditioning_to:
n = [t[0], t[1].copy()]
position_params_batch = [[] for _ in range(batch_size)] # Initialize a list of empty lists for each batch item
for i in range(batch_size):
x_position, y_position = coordinates[i]
position_param = (cond_pooled, height // 8, width // 8, y_position // 8, x_position // 8)
position_params_batch[i].append(position_param) # Append position_param to the correct sublist
prev = []
if "gligen" in n[1]:
prev = n[1]['gligen'][2]
else:
prev = [[] for _ in range(batch_size)]
# Concatenate prev and position_params_batch, ensuring both are lists of lists
# and each sublist corresponds to a batch item
combined_position_params = [prev_item + batch_item for prev_item, batch_item in zip(prev, position_params_batch)]
n[1]['gligen'] = ("position", gligen_textbox_model, combined_position_params)
c.append(n)
return (c, plot_image_tensor,)
def plot_coordinates_to_tensor(self, coordinates, height, width, box_size):
import matplotlib
matplotlib.use('Agg')
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
# Convert coordinates to separate x and y lists
#x_coords, y_coords = zip(*coordinates)
fig, ax = matplotlib.pyplot.subplots(figsize=(width/100, height/100), dpi=100)
#ax.scatter(x_coords, y_coords, color='yellow', label='_nolegend_')
# Draw a box at each coordinate
for x, y in coordinates:
rect = matplotlib.patches.Rectangle((x - box_size/2, y - box_size/2), box_size, box_size,
linewidth=1, edgecolor='green', facecolor='none', alpha=0.5)
ax.add_patch(rect)
# Draw arrows from one point to another to indicate direction
for i in range(len(coordinates) - 1):
x1, y1 = coordinates[i]
x2, y2 = coordinates[i + 1]
ax.annotate("", xy=(x2, y2), xytext=(x1, y1),
arrowprops=dict(arrowstyle="->",
linestyle="-",
lw=1,
color='orange',
mutation_scale=10))
matplotlib.pyplot.rcParams['text.color'] = '#999999'
fig.patch.set_facecolor('#353535')
ax.set_facecolor('#353535')
ax.grid(color='#999999', linestyle='-', linewidth=0.5)
ax.set_xlabel('x', color='#999999')
ax.set_ylabel('y', color='#999999')
for text in ax.get_xticklabels() + ax.get_yticklabels():
text.set_color('#999999')
ax.set_title('Gligen positions')
ax.set_xlabel('X Coordinate')
ax.set_ylabel('Y Coordinate')
ax.legend().remove()
ax.set_xlim(0, width) # Set the x-axis to match the input latent width
ax.set_ylim(height, 0) # Set the y-axis to match the input latent height, with (0,0) at top-left
# Adjust the margins of the subplot
matplotlib.pyplot.subplots_adjust(left=0.08, right=0.95, bottom=0.05, top=0.95, wspace=0.2, hspace=0.2)
canvas = FigureCanvas(fig)
canvas.draw()
matplotlib.pyplot.close(fig)
width, height = fig.get_size_inches() * fig.get_dpi()
image_np = np.frombuffer(canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
image_tensor = torch.from_numpy(image_np).float() / 255.0
image_tensor = image_tensor.unsqueeze(0)
return image_tensor