mirror of
https://git.datalinker.icu/kijai/ComfyUI-KJNodes.git
synced 2025-12-10 05:15:05 +08:00
512 lines
24 KiB
Python
512 lines
24 KiB
Python
from comfy.ldm.modules import attention as comfy_attention
|
|
|
|
import comfy.model_patcher
|
|
import comfy.utils
|
|
import comfy.sd
|
|
import torch
|
|
import folder_paths
|
|
import comfy.model_management as mm
|
|
from comfy.cli_args import args
|
|
|
|
orig_attention = comfy_attention.optimized_attention
|
|
original_patch_model = comfy.model_patcher.ModelPatcher.patch_model
|
|
original_load_lora_for_models = comfy.sd.load_lora_for_models
|
|
|
|
class BaseLoaderKJ:
|
|
original_linear = None
|
|
cublas_patched = False
|
|
|
|
def _patch_modules(self, patch_cublaslinear, sage_attention):
|
|
from comfy.ops import disable_weight_init, CastWeightBiasOp, cast_bias_weight
|
|
|
|
if sage_attention != "disabled":
|
|
print("Patching comfy attention to use sageattn")
|
|
from sageattention import sageattn
|
|
def set_sage_func(sage_attention):
|
|
if sage_attention == "auto":
|
|
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
|
|
return sageattn(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout)
|
|
return func
|
|
elif sage_attention == "sageattn_qk_int8_pv_fp16_cuda":
|
|
from sageattention import sageattn_qk_int8_pv_fp16_cuda
|
|
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
|
|
return sageattn_qk_int8_pv_fp16_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32", tensor_layout=tensor_layout)
|
|
return func
|
|
elif sage_attention == "sageattn_qk_int8_pv_fp16_triton":
|
|
from sageattention import sageattn_qk_int8_pv_fp16_triton
|
|
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
|
|
return sageattn_qk_int8_pv_fp16_triton(q, k, v, is_causal=is_causal, attn_mask=attn_mask, tensor_layout=tensor_layout)
|
|
return func
|
|
elif sage_attention == "sageattn_qk_int8_pv_fp8_cuda":
|
|
from sageattention import sageattn_qk_int8_pv_fp8_cuda
|
|
def func(q, k, v, is_causal=False, attn_mask=None, tensor_layout="NHD"):
|
|
return sageattn_qk_int8_pv_fp8_cuda(q, k, v, is_causal=is_causal, attn_mask=attn_mask, pv_accum_dtype="fp32+fp32", tensor_layout=tensor_layout)
|
|
return func
|
|
|
|
sage_func = set_sage_func(sage_attention)
|
|
|
|
@torch.compiler.disable()
|
|
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
|
if skip_reshape:
|
|
b, _, _, dim_head = q.shape
|
|
tensor_layout="HND"
|
|
else:
|
|
b, _, dim_head = q.shape
|
|
dim_head //= heads
|
|
q, k, v = map(
|
|
lambda t: t.view(b, -1, heads, dim_head),
|
|
(q, k, v),
|
|
)
|
|
tensor_layout="NHD"
|
|
if mask is not None:
|
|
# add a batch dimension if there isn't already one
|
|
if mask.ndim == 2:
|
|
mask = mask.unsqueeze(0)
|
|
# add a heads dimension if there isn't already one
|
|
if mask.ndim == 3:
|
|
mask = mask.unsqueeze(1)
|
|
out = sage_func(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
|
|
if tensor_layout == "HND":
|
|
if not skip_output_reshape:
|
|
out = (
|
|
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
|
)
|
|
else:
|
|
if skip_output_reshape:
|
|
out = out.transpose(1, 2)
|
|
else:
|
|
out = out.reshape(b, -1, heads * dim_head)
|
|
return out
|
|
|
|
comfy_attention.optimized_attention = attention_sage
|
|
comfy.ldm.hunyuan_video.model.optimized_attention = attention_sage
|
|
comfy.ldm.flux.math.optimized_attention = attention_sage
|
|
comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = attention_sage
|
|
comfy.ldm.cosmos.blocks.optimized_attention = attention_sage
|
|
|
|
else:
|
|
comfy_attention.optimized_attention = orig_attention
|
|
comfy.ldm.hunyuan_video.model.optimized_attention = orig_attention
|
|
comfy.ldm.flux.math.optimized_attention = orig_attention
|
|
comfy.ldm.genmo.joint_model.asymm_models_joint.optimized_attention = orig_attention
|
|
comfy.ldm.cosmos.blocks.optimized_attention = orig_attention
|
|
|
|
if patch_cublaslinear:
|
|
if not BaseLoaderKJ.cublas_patched:
|
|
BaseLoaderKJ.original_linear = disable_weight_init.Linear
|
|
try:
|
|
from cublas_ops import CublasLinear
|
|
except ImportError:
|
|
raise Exception("Can't import 'torch-cublas-hgemm', install it from here https://github.com/aredden/torch-cublas-hgemm")
|
|
|
|
class PatchedLinear(CublasLinear, CastWeightBiasOp):
|
|
def reset_parameters(self):
|
|
pass
|
|
|
|
def forward_comfy_cast_weights(self, input):
|
|
weight, bias = cast_bias_weight(self, input)
|
|
return torch.nn.functional.linear(input, weight, bias)
|
|
|
|
def forward(self, *args, **kwargs):
|
|
if self.comfy_cast_weights:
|
|
return self.forward_comfy_cast_weights(*args, **kwargs)
|
|
else:
|
|
return super().forward(*args, **kwargs)
|
|
|
|
disable_weight_init.Linear = PatchedLinear
|
|
BaseLoaderKJ.cublas_patched = True
|
|
else:
|
|
if BaseLoaderKJ.cublas_patched:
|
|
disable_weight_init.Linear = BaseLoaderKJ.original_linear
|
|
BaseLoaderKJ.cublas_patched = False
|
|
|
|
class PathchSageAttentionKJ(BaseLoaderKJ):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"sage_attention": (["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda"], {"default": False, "tooltip": "Global patch comfy attention to use sageattn, once patched to revert back to normal you would need to run this node again with disabled option."}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL", )
|
|
FUNCTION = "patch"
|
|
DESCRIPTION = "Experimental node for patching attention mode. This doesn't use the model patching system and thus can't be disabled without running the node again with 'disabled' option."
|
|
EXPERIMENTAL = True
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def patch(self, model, sage_attention):
|
|
self._patch_modules(False, sage_attention)
|
|
return model,
|
|
|
|
class CheckpointLoaderKJ(BaseLoaderKJ):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
|
|
"patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
|
|
"sage_attention": (["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda"], {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
|
FUNCTION = "patch"
|
|
OUTPUT_NODE = True
|
|
DESCRIPTION = "Experimental node for patching torch.nn.Linear with CublasLinear."
|
|
EXPERIMENTAL = True
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def patch(self, ckpt_name, patch_cublaslinear, sage_attention):
|
|
self._patch_modules(patch_cublaslinear, sage_attention)
|
|
from nodes import CheckpointLoaderSimple
|
|
model, clip, vae = CheckpointLoaderSimple.load_checkpoint(self, ckpt_name)
|
|
return model, clip, vae
|
|
|
|
class DiffusionModelLoaderKJ(BaseLoaderKJ):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"ckpt_name": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "The name of the checkpoint (model) to load."}),
|
|
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],),
|
|
"patch_cublaslinear": ("BOOLEAN", {"default": False, "tooltip": "Enable or disable the patching, won't take effect on already loaded models!"}),
|
|
"sage_attention": (["disabled", "auto", "sageattn_qk_int8_pv_fp16_cuda", "sageattn_qk_int8_pv_fp16_triton", "sageattn_qk_int8_pv_fp8_cuda"], {"default": False, "tooltip": "Patch comfy attention to use sageattn."}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch_and_load"
|
|
OUTPUT_NODE = True
|
|
DESCRIPTION = "Node for patching torch.nn.Linear with CublasLinear."
|
|
EXPERIMENTAL = True
|
|
CATEGORY = "KJNodes/experimental"
|
|
|
|
def patch_and_load(self, ckpt_name, weight_dtype, patch_cublaslinear, sage_attention):
|
|
from nodes import UNETLoader
|
|
model, = UNETLoader.load_unet(self, ckpt_name, weight_dtype)
|
|
self._patch_modules(patch_cublaslinear, sage_attention)
|
|
return (model,)
|
|
|
|
def patched_patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
|
|
|
|
if lowvram_model_memory == 0:
|
|
full_load = True
|
|
else:
|
|
full_load = False
|
|
|
|
device_to = mm.get_torch_device()
|
|
load_weights = True
|
|
if load_weights:
|
|
self.load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights, full_load=full_load)
|
|
for k in self.object_patches:
|
|
old = comfy.utils.set_attr(self.model, k, self.object_patches[k])
|
|
if k not in self.object_patches_backup:
|
|
self.object_patches_backup[k] = old
|
|
|
|
return self.model
|
|
|
|
def patched_load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
|
|
|
patch_keys = list(model.object_patches_backup.keys())
|
|
for k in patch_keys:
|
|
#print("backing up object patch: ", k)
|
|
comfy.utils.set_attr(model.model, k, model.object_patches_backup[k])
|
|
|
|
key_map = {}
|
|
if model is not None:
|
|
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
|
|
if clip is not None:
|
|
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
|
|
|
|
loaded = comfy.lora.load_lora(lora, key_map)
|
|
#print(temp_object_patches_backup)
|
|
|
|
if model is not None:
|
|
new_modelpatcher = model.clone()
|
|
k = new_modelpatcher.add_patches(loaded, strength_model)
|
|
else:
|
|
k = ()
|
|
new_modelpatcher = None
|
|
|
|
if clip is not None:
|
|
new_clip = clip.clone()
|
|
k1 = new_clip.add_patches(loaded, strength_clip)
|
|
else:
|
|
k1 = ()
|
|
new_clip = None
|
|
k = set(k)
|
|
k1 = set(k1)
|
|
for x in loaded:
|
|
if (x not in k) and (x not in k1):
|
|
print("NOT LOADED {}".format(x))
|
|
|
|
if patch_keys:
|
|
if hasattr(model.model, "compile_settings"):
|
|
compile_settings = getattr(model.model, "compile_settings")
|
|
print("compile_settings: ", compile_settings)
|
|
for k in patch_keys:
|
|
if "diffusion_model." in k:
|
|
# Remove the prefix to get the attribute path
|
|
key = k.replace('diffusion_model.', '')
|
|
attributes = key.split('.')
|
|
# Start with the diffusion_model object
|
|
block = model.get_model_object("diffusion_model")
|
|
# Navigate through the attributes to get to the block
|
|
for attr in attributes:
|
|
if attr.isdigit():
|
|
block = block[int(attr)]
|
|
else:
|
|
block = getattr(block, attr)
|
|
# Compile the block
|
|
compiled_block = torch.compile(block, mode=compile_settings["mode"], dynamic=compile_settings["dynamic"], fullgraph=compile_settings["fullgraph"], backend=compile_settings["backend"])
|
|
# Add the compiled block back as an object patch
|
|
model.add_object_patch(k, compiled_block)
|
|
return (new_modelpatcher, new_clip)
|
|
|
|
class PatchModelPatcherOrder:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"patch_order": (["object_patch_first", "weight_patch_first"], {"default": "weight_patch_first", "tooltip": "Patch the comfy patch_model function to load weight patches (LoRAs) before compiling the model"}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
CATEGORY = "KJNodes/experimental"
|
|
DESCTIPTION = "Patch the comfy patch_model function patching order, useful for torch.compile (used as object_patch) as it should come last if you want to use LoRAs with compile"
|
|
EXPERIMENTAL = True
|
|
|
|
def patch(self, model, patch_order):
|
|
comfy.model_patcher.ModelPatcher.temp_object_patches_backup = {}
|
|
if patch_order == "weight_patch_first":
|
|
comfy.model_patcher.ModelPatcher.patch_model = patched_patch_model
|
|
comfy.sd.load_lora_for_models = patched_load_lora_for_models
|
|
else:
|
|
comfy.model_patcher.ModelPatcher.patch_model = original_patch_model
|
|
comfy.sd.load_lora_for_models = original_load_lora_for_models
|
|
|
|
return model,
|
|
|
|
class TorchCompileModelFluxAdvanced:
|
|
def __init__(self):
|
|
self._compiled = False
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"backend": (["inductor", "cudagraphs"],),
|
|
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
|
|
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
|
|
"double_blocks": ("STRING", {"default": "0-18", "multiline": True}),
|
|
"single_blocks": ("STRING", {"default": "0-37", "multiline": True}),
|
|
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
EXPERIMENTAL = True
|
|
|
|
def parse_blocks(self, blocks_str):
|
|
blocks = []
|
|
for part in blocks_str.split(','):
|
|
part = part.strip()
|
|
if '-' in part:
|
|
start, end = map(int, part.split('-'))
|
|
blocks.extend(range(start, end + 1))
|
|
else:
|
|
blocks.append(int(part))
|
|
return blocks
|
|
|
|
def patch(self, model, backend, mode, fullgraph, single_blocks, double_blocks, dynamic):
|
|
single_block_list = self.parse_blocks(single_blocks)
|
|
double_block_list = self.parse_blocks(double_blocks)
|
|
m = model.clone()
|
|
diffusion_model = m.get_model_object("diffusion_model")
|
|
|
|
if not self._compiled:
|
|
try:
|
|
for i, block in enumerate(diffusion_model.double_blocks):
|
|
if i in double_block_list:
|
|
#print("Compiling double_block", i)
|
|
m.add_object_patch(f"diffusion_model.double_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
|
|
for i, block in enumerate(diffusion_model.single_blocks):
|
|
if i in single_block_list:
|
|
#print("Compiling single block", i)
|
|
m.add_object_patch(f"diffusion_model.single_blocks.{i}", torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend))
|
|
self._compiled = True
|
|
compile_settings = {
|
|
"backend": backend,
|
|
"mode": mode,
|
|
"fullgraph": fullgraph,
|
|
"dynamic": dynamic,
|
|
}
|
|
setattr(m.model, "compile_settings", compile_settings)
|
|
except:
|
|
raise RuntimeError("Failed to compile model")
|
|
|
|
return (m, )
|
|
# rest of the layers that are not patched
|
|
# diffusion_model.final_layer = torch.compile(diffusion_model.final_layer, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
# diffusion_model.guidance_in = torch.compile(diffusion_model.guidance_in, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
# diffusion_model.img_in = torch.compile(diffusion_model.img_in, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
# diffusion_model.time_in = torch.compile(diffusion_model.time_in, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
# diffusion_model.txt_in = torch.compile(diffusion_model.txt_in, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
# diffusion_model.vector_in = torch.compile(diffusion_model.vector_in, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
|
|
class TorchCompileVAE:
|
|
def __init__(self):
|
|
self._compiled_encoder = False
|
|
self._compiled_decoder = False
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"vae": ("VAE",),
|
|
"backend": (["inductor", "cudagraphs"],),
|
|
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
|
|
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
|
|
"compile_encoder": ("BOOLEAN", {"default": True, "tooltip": "Compile encoder"}),
|
|
"compile_decoder": ("BOOLEAN", {"default": True, "tooltip": "Compile decoder"}),
|
|
}}
|
|
RETURN_TYPES = ("VAE",)
|
|
FUNCTION = "compile"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
EXPERIMENTAL = True
|
|
|
|
def compile(self, vae, backend, mode, fullgraph, compile_encoder, compile_decoder):
|
|
if compile_encoder:
|
|
if not self._compiled_encoder:
|
|
try:
|
|
vae.first_stage_model.encoder = torch.compile(vae.first_stage_model.encoder, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
self._compiled_encoder = True
|
|
except:
|
|
raise RuntimeError("Failed to compile model")
|
|
if compile_decoder:
|
|
if not self._compiled_decoder:
|
|
try:
|
|
vae.first_stage_model.decoder = torch.compile(vae.first_stage_model.decoder, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
self._compiled_decoder = True
|
|
except:
|
|
raise RuntimeError("Failed to compile model")
|
|
return (vae, )
|
|
|
|
class TorchCompileControlNet:
|
|
def __init__(self):
|
|
self._compiled= False
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"controlnet": ("CONTROL_NET",),
|
|
"backend": (["inductor", "cudagraphs"],),
|
|
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
|
|
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
|
|
}}
|
|
RETURN_TYPES = ("CONTROL_NET",)
|
|
FUNCTION = "compile"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
EXPERIMENTAL = True
|
|
|
|
def compile(self, controlnet, backend, mode, fullgraph):
|
|
if not self._compiled:
|
|
try:
|
|
# for i, block in enumerate(controlnet.control_model.double_blocks):
|
|
# print("Compiling controlnet double_block", i)
|
|
# controlnet.control_model.double_blocks[i] = torch.compile(block, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
controlnet.control_model = torch.compile(controlnet.control_model, mode=mode, fullgraph=fullgraph, backend=backend)
|
|
self._compiled = True
|
|
except:
|
|
self._compiled = False
|
|
raise RuntimeError("Failed to compile model")
|
|
|
|
return (controlnet, )
|
|
|
|
class TorchCompileLTXModel:
|
|
def __init__(self):
|
|
self._compiled = False
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"backend": (["inductor", "cudagraphs"],),
|
|
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
|
|
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
|
|
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
EXPERIMENTAL = True
|
|
|
|
def patch(self, model, backend, mode, fullgraph, dynamic):
|
|
m = model.clone()
|
|
diffusion_model = m.get_model_object("diffusion_model")
|
|
|
|
if not self._compiled:
|
|
try:
|
|
for i, block in enumerate(diffusion_model.transformer_blocks):
|
|
compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
|
|
m.add_object_patch(f"diffusion_model.transformer_blocks.{i}", compiled_block)
|
|
self._compiled = True
|
|
compile_settings = {
|
|
"backend": backend,
|
|
"mode": mode,
|
|
"fullgraph": fullgraph,
|
|
"dynamic": dynamic,
|
|
}
|
|
setattr(m.model, "compile_settings", compile_settings)
|
|
|
|
except:
|
|
raise RuntimeError("Failed to compile model")
|
|
|
|
return (m, )
|
|
|
|
class TorchCompileCosmosModel:
|
|
def __init__(self):
|
|
self._compiled = False
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"model": ("MODEL",),
|
|
"backend": (["inductor", "cudagraphs"],),
|
|
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
|
|
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
|
|
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
|
|
"dynamo_cache_size_limit": ("INT", {"default": 64, "tooltip": "Set the dynamo cache size limit"}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "KJNodes/experimental"
|
|
EXPERIMENTAL = True
|
|
|
|
def patch(self, model, backend, mode, fullgraph, dynamic, dynamo_cache_size_limit):
|
|
|
|
m = model.clone()
|
|
diffusion_model = m.get_model_object("diffusion_model")
|
|
torch._dynamo.config.cache_size_limit = dynamo_cache_size_limit
|
|
|
|
if not self._compiled:
|
|
try:
|
|
for name, block in diffusion_model.blocks.items():
|
|
#print(f"Compiling block {name}")
|
|
compiled_block = torch.compile(block, mode=mode, dynamic=dynamic, fullgraph=fullgraph, backend=backend)
|
|
m.add_object_patch(f"diffusion_model.blocks.{name}", compiled_block)
|
|
#diffusion_model.blocks[name] = compiled_block
|
|
|
|
self._compiled = True
|
|
compile_settings = {
|
|
"backend": backend,
|
|
"mode": mode,
|
|
"fullgraph": fullgraph,
|
|
"dynamic": dynamic,
|
|
}
|
|
setattr(m.model, "compile_settings", compile_settings)
|
|
|
|
except:
|
|
raise RuntimeError("Failed to compile model")
|
|
|
|
return (m, ) |