ComfyUI-KJNodes/nodes/lora_nodes.py
2025-09-08 10:43:50 +03:00

549 lines
22 KiB
Python

import torch
import comfy.model_management
import comfy.utils
import folder_paths
import os
import logging
from tqdm import tqdm
import numpy as np
device = comfy.model_management.get_torch_device()
CLAMP_QUANTILE = 0.99
def extract_lora(diff, key, rank, algorithm, lora_type, lowrank_iters=7, adaptive_param=1.0, clamp_quantile=True):
"""
Extracts LoRA weights from a weight difference tensor using SVD.
"""
conv2d = (len(diff.shape) == 4)
kernel_size = None if not conv2d else diff.size()[2:4]
conv2d_3x3 = conv2d and kernel_size != (1, 1)
out_dim, in_dim = diff.size()[0:2]
if conv2d:
if conv2d_3x3:
diff = diff.flatten(start_dim=1)
else:
diff = diff.squeeze()
diff_float = diff.float()
if algorithm == "svd_lowrank":
U, S, V = torch.svd_lowrank(diff_float, q=min(rank, in_dim, out_dim), niter=lowrank_iters)
U = U @ torch.diag(S)
Vh = V.t()
else:
#torch.linalg.svdvals()
U, S, Vh = torch.linalg.svd(diff_float)
# Flexible rank selection logic like locon: https://github.com/KohakuBlueleaf/LyCORIS/blob/main/tools/extract_locon.py
if "adaptive" in lora_type:
if lora_type == "adaptive_ratio":
min_s = torch.max(S) * adaptive_param
lora_rank = torch.sum(S > min_s).item()
elif lora_type == "adaptive_energy":
energy = torch.cumsum(S**2, dim=0)
total_energy = torch.sum(S**2)
threshold = adaptive_param * total_energy # e.g., adaptive_param=0.95 for 95%
lora_rank = torch.sum(energy < threshold).item() + 1
elif lora_type == "adaptive_quantile":
s_cum = torch.cumsum(S, dim=0)
min_cum_sum = adaptive_param * torch.sum(S)
lora_rank = torch.sum(s_cum < min_cum_sum).item()
print(f"{key} Extracted LoRA rank: {lora_rank}")
else:
lora_rank = rank
lora_rank = max(1, lora_rank)
lora_rank = min(out_dim, in_dim, lora_rank)
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
if clamp_quantile:
dist = torch.cat([U.flatten(), Vh.flatten()])
if dist.numel() > 100_000:
# Sample 100,000 elements for quantile estimation
idx = torch.randperm(dist.numel(), device=dist.device)[:100_000]
dist_sample = dist[idx]
hi_val = torch.quantile(dist_sample, CLAMP_QUANTILE)
else:
hi_val = torch.quantile(dist, CLAMP_QUANTILE)
low_val = -hi_val
U = U.clamp(low_val, hi_val)
Vh = Vh.clamp(low_val, hi_val)
if conv2d:
U = U.reshape(out_dim, lora_rank, 1, 1)
Vh = Vh.reshape(lora_rank, in_dim, kernel_size[0], kernel_size[1])
return (U, Vh)
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, algorithm, lowrank_iters, out_dtype, bias_diff=False, adaptive_param=1.0, clamp_quantile=True):
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
model_diff.model.diffusion_model.cpu()
sd = model_diff.model_state_dict(filter_prefix=prefix_model)
del model_diff
comfy.model_management.soft_empty_cache()
for k, v in sd.items():
if isinstance(v, torch.Tensor):
sd[k] = v.cpu()
# Get total number of keys to process for progress bar
total_keys = len([k for k in sd if k.endswith(".weight") or (bias_diff and k.endswith(".bias"))])
# Create progress bar
progress_bar = tqdm(total=total_keys, desc=f"Extracting LoRA ({prefix_lora.strip('.')})")
comfy_pbar = comfy.utils.ProgressBar(total_keys)
for k in sd:
if k.endswith(".weight"):
weight_diff = sd[k]
if weight_diff.ndim == 5:
logging.info(f"Skipping 5D tensor for key {k}") #skip patch embed
progress_bar.update(1)
comfy_pbar.update(1)
continue
if lora_type != "full":
if weight_diff.ndim < 2:
if bias_diff:
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().to(out_dtype).cpu()
progress_bar.update(1)
comfy_pbar.update(1)
continue
try:
out = extract_lora(weight_diff.to(device), k, rank, algorithm, lora_type, lowrank_iters=lowrank_iters, adaptive_param=adaptive_param, clamp_quantile=clamp_quantile)
output_sd["{}{}.lora_up.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[0].contiguous().to(out_dtype).cpu()
output_sd["{}{}.lora_down.weight".format(prefix_lora, k[len(prefix_model):-7])] = out[1].contiguous().to(out_dtype).cpu()
except Exception as e:
logging.warning(f"Could not generate lora weights for key {k}, error {e}")
else:
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().to(out_dtype).cpu()
progress_bar.update(1)
comfy_pbar.update(1)
elif bias_diff and k.endswith(".bias"):
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().to(out_dtype).cpu()
progress_bar.update(1)
comfy_pbar.update(1)
progress_bar.close()
return output_sd
class LoraExtractKJ:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"finetuned_model": ("MODEL",),
"original_model": ("MODEL",),
"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}),
"rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}),
"lora_type": (["standard", "full", "adaptive_ratio", "adaptive_quantile", "adaptive_energy"],),
"algorithm": (["svd_linalg", "svd_lowrank"], {"default": "svd_linalg", "tooltip": "SVD algorithm to use, svd_lowrank is faster but less accurate."}),
"lowrank_iters": ("INT", {"default": 7, "min": 1, "max": 100, "step": 1, "tooltip": "The number of subspace iterations for lowrank SVD algorithm."}),
"output_dtype": (["fp16", "bf16", "fp32"], {"default": "fp16"}),
"bias_diff": ("BOOLEAN", {"default": True}),
"adaptive_param": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "For ratio mode, this is the ratio of the maximum singular value. For quantile mode, this is the quantile of the singular values."}),
"clamp_quantile": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "KJNodes/lora"
def save(self, finetuned_model, original_model, filename_prefix, rank, lora_type, algorithm, lowrank_iters, output_dtype, bias_diff, adaptive_param, clamp_quantile):
if algorithm == "svd_lowrank" and lora_type != "standard":
raise ValueError("svd_lowrank algorithm is only supported for standard LoRA extraction.")
dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[output_dtype]
m = finetuned_model.clone()
kp = original_model.get_key_patches("diffusion_model.")
for k in kp:
m.add_patches({k: kp[k]}, - 1.0, 1.0)
model_diff = m
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
output_sd = {}
if model_diff is not None:
output_sd = calc_lora_model(model_diff, rank, "diffusion_model.", "diffusion_model.", output_sd, lora_type, algorithm, lowrank_iters, dtype, bias_diff=bias_diff, adaptive_param=adaptive_param, clamp_quantile=clamp_quantile)
if "adaptive" in lora_type:
rank_str = f"{lora_type}_{adaptive_param:.2f}"
else:
rank_str = rank
output_checkpoint = f"{filename}_rank_{rank_str}_{output_dtype}_{counter:05}_.safetensors"
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
return {}
NODE_CLASS_MAPPINGS = {
"LoraExtractKJ": LoraExtractKJ
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoraExtractKJ": "LoraExtractKJ"
}
class LoraReduceRank:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
@classmethod
def INPUT_TYPES(s):
return {"required":
{
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
"new_rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1, "tooltip": "The new rank to resize the LoRA. Acts as max rank when using dynamic_method."}),
"dynamic_method": (["disabled", "sv_ratio", "sv_cumulative", "sv_fro"], {"default": "disabled", "tooltip": "Method to use for dynamically determining new alphas and dims"}),
"dynamic_param": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Method to use for dynamically determining new alphas and dims"}),
"output_dtype": (["match_original", "fp16", "bf16", "fp32"], {"default": "match_original", "tooltip": "Data type to save the LoRA as."}),
"verbose": ("BOOLEAN", {"default": True}),
},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
EXPERIMENTAL = True
DESCRIPTION = "Resize a LoRA model by reducing it's rank. Based on kohya's sd-scripts: https://github.com/kohya-ss/sd-scripts/blob/main/networks/resize_lora.py"
CATEGORY = "KJNodes/lora"
def save(self, lora_name, new_rank, output_dtype, dynamic_method, dynamic_param, verbose):
lora_path = folder_paths.get_full_path("loras", lora_name)
lora_sd, metadata = comfy.utils.load_torch_file(lora_path, return_metadata=True)
if output_dtype == "fp16":
save_dtype = torch.float16
elif output_dtype == "bf16":
save_dtype = torch.bfloat16
elif output_dtype == "fp32":
save_dtype = torch.float32
elif output_dtype == "match_original":
first_weight_key = next(k for k in lora_sd if k.endswith(".weight") and isinstance(lora_sd[k], torch.Tensor))
save_dtype = lora_sd[first_weight_key].dtype
new_lora_sd = {}
for k, v in lora_sd.items():
new_lora_sd[k.replace(".default", "")] = v
del lora_sd
print("Resizing Lora...")
output_sd, old_dim, new_alpha, rank_list = resize_lora_model(new_lora_sd, new_rank, save_dtype, device, dynamic_method, dynamic_param, verbose)
# update metadata
if metadata is None:
metadata = {}
comment = metadata.get("ss_training_comment", "")
if dynamic_method == "disabled":
metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {new_rank}; {comment}"
metadata["ss_network_dim"] = str(new_rank)
metadata["ss_network_alpha"] = str(new_alpha)
else:
metadata["ss_training_comment"] = f"Dynamic resize with {dynamic_method}: {dynamic_param} from {old_dim}; {comment}"
metadata["ss_network_dim"] = "Dynamic"
metadata["ss_network_alpha"] = "Dynamic"
# cast to save_dtype before calculating hashes
for key in list(output_sd.keys()):
value = output_sd[key]
if type(value) == torch.Tensor and value.dtype.is_floating_point and value.dtype != save_dtype:
output_sd[key] = value.to(save_dtype)
output_filename_prefix = "loras/" + lora_name
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(output_filename_prefix, self.output_dir)
output_dtype_str = f"_{output_dtype}" if output_dtype != "match_original" else ""
average_rank = str(int(np.mean(rank_list)))
rank_str = new_rank if dynamic_method == "disabled" else f"dynamic_{average_rank}"
output_checkpoint = f"{filename.replace('.safetensors', '')}_resized_from_{old_dim}_to_{rank_str}{output_dtype_str}_{counter:05}_.safetensors"
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
print(f"Saving resized LoRA to {output_checkpoint}")
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=metadata)
return {}
NODE_CLASS_MAPPINGS = {
"LoraExtractKJ": LoraExtractKJ
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoraExtractKJ": "LoraExtractKJ"
}
# Convert LoRA to different rank approximation (should only be used to go to lower rank)
# This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py
# Thanks to cloneofsimo
# This version is based on
# https://github.com/kohya-ss/sd-scripts/blob/main/networks/resize_lora.py
MIN_SV = 1e-6
LORA_DOWN_UP_FORMATS = [
("lora_down", "lora_up"), # sd-scripts LoRA
("lora_A", "lora_B"), # PEFT LoRA
("down", "up"), # ControlLoRA
]
# Indexing functions
def index_sv_cumulative(S, target):
original_sum = float(torch.sum(S))
cumulative_sums = torch.cumsum(S, dim=0) / original_sum
index = int(torch.searchsorted(cumulative_sums, target)) + 1
index = max(1, min(index, len(S) - 1))
return index
def index_sv_fro(S, target):
S_squared = S.pow(2)
S_fro_sq = float(torch.sum(S_squared))
sum_S_squared = torch.cumsum(S_squared, dim=0) / S_fro_sq
index = int(torch.searchsorted(sum_S_squared, target**2)) + 1
index = max(1, min(index, len(S) - 1))
return index
def index_sv_ratio(S, target):
max_sv = S[0]
min_sv = max_sv / target
index = int(torch.sum(S > min_sv).item())
index = max(1, min(index, len(S) - 1))
return index
# Modified from Kohaku-blueleaf's extract/merge functions
def extract_conv(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
out_size, in_size, kernel_size, _ = weight.size()
if weight.dtype != torch.float32:
weight = weight.to(torch.float32)
U, S, Vh = torch.linalg.svd(weight.reshape(out_size, -1).to(device))
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
lora_rank = param_dict["new_rank"]
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size, kernel_size, kernel_size).cpu()
param_dict["lora_up"] = U.reshape(out_size, lora_rank, 1, 1).cpu()
del U, S, Vh, weight
return param_dict
def extract_linear(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1):
out_size, in_size = weight.size()
if weight.dtype != torch.float32:
weight = weight.to(torch.float32)
U, S, Vh = torch.linalg.svd(weight.to(device))
param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale)
lora_rank = param_dict["new_rank"]
U = U[:, :lora_rank]
S = S[:lora_rank]
U = U @ torch.diag(S)
Vh = Vh[:lora_rank, :]
param_dict["lora_down"] = Vh.reshape(lora_rank, in_size).cpu()
param_dict["lora_up"] = U.reshape(out_size, lora_rank).cpu()
del U, S, Vh, weight
return param_dict
def merge_conv(lora_down, lora_up, device):
in_rank, in_size, kernel_size, k_ = lora_down.shape
out_size, out_rank, _, _ = lora_up.shape
assert in_rank == out_rank and kernel_size == k_, f"rank {in_rank} {out_rank} or kernel {kernel_size} {k_} mismatch"
lora_down = lora_down.to(device)
lora_up = lora_up.to(device)
merged = lora_up.reshape(out_size, -1) @ lora_down.reshape(in_rank, -1)
weight = merged.reshape(out_size, in_size, kernel_size, kernel_size)
del lora_up, lora_down
return weight
def merge_linear(lora_down, lora_up, device):
in_rank, in_size = lora_down.shape
out_size, out_rank = lora_up.shape
assert in_rank == out_rank, f"rank {in_rank} {out_rank} mismatch"
lora_down = lora_down.to(device)
lora_up = lora_up.to(device)
weight = lora_up @ lora_down
del lora_up, lora_down
return weight
# Calculate new rank
def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1):
param_dict = {}
if dynamic_method == "sv_ratio":
# Calculate new dim and alpha based off ratio
new_rank = index_sv_ratio(S, dynamic_param) + 1
new_alpha = float(scale * new_rank)
elif dynamic_method == "sv_cumulative":
# Calculate new dim and alpha based off cumulative sum
new_rank = index_sv_cumulative(S, dynamic_param) + 1
new_alpha = float(scale * new_rank)
elif dynamic_method == "sv_fro":
# Calculate new dim and alpha based off sqrt sum of squares
new_rank = index_sv_fro(S, dynamic_param) + 1
new_alpha = float(scale * new_rank)
else:
new_rank = rank
new_alpha = float(scale * new_rank)
if S[0] <= MIN_SV: # Zero matrix, set dim to 1
new_rank = 1
new_alpha = float(scale * new_rank)
elif new_rank > rank: # cap max rank at rank
new_rank = rank
new_alpha = float(scale * new_rank)
# Calculate resize info
s_sum = torch.sum(torch.abs(S))
s_rank = torch.sum(torch.abs(S[:new_rank]))
S_squared = S.pow(2)
s_fro = torch.sqrt(torch.sum(S_squared))
s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank]))
fro_percent = float(s_red_fro / s_fro)
param_dict["new_rank"] = new_rank
param_dict["new_alpha"] = new_alpha
param_dict["sum_retained"] = (s_rank) / s_sum
param_dict["fro_retained"] = fro_percent
param_dict["max_ratio"] = S[0] / S[new_rank - 1]
return param_dict
def resize_lora_model(lora_sd, new_rank, save_dtype, device, dynamic_method, dynamic_param, verbose):
max_old_rank = None
new_alpha = None
verbose_str = "\n"
fro_list = []
rank_list = []
if dynamic_method:
print(f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}")
lora_down_weight = None
lora_up_weight = None
o_lora_sd = lora_sd.copy()
block_down_name = None
block_up_name = None
total_keys = len([k for k in lora_sd if k.endswith(".weight")])
pbar = comfy.utils.ProgressBar(total_keys)
for key, value in tqdm(lora_sd.items(), leave=True, desc="Resizing LoRA weights"):
key_parts = key.split(".")
block_down_name = None
for _format in LORA_DOWN_UP_FORMATS:
# Currently we only match lora_down_name in the last two parts of key
# because ("down", "up") are general words and may appear in block_down_name
if len(key_parts) >= 2 and _format[0] == key_parts[-2]:
block_down_name = ".".join(key_parts[:-2])
lora_down_name = "." + _format[0]
lora_up_name = "." + _format[1]
weight_name = "." + key_parts[-1]
break
if len(key_parts) >= 1 and _format[0] == key_parts[-1]:
block_down_name = ".".join(key_parts[:-1])
lora_down_name = "." + _format[0]
lora_up_name = "." + _format[1]
weight_name = ""
break
if block_down_name is None:
# This parameter is not lora_down
continue
# Now weight_name can be ".weight" or ""
# Find corresponding lora_up and alpha
block_up_name = block_down_name
lora_down_weight = value
lora_up_weight = lora_sd.get(block_up_name + lora_up_name + weight_name, None)
lora_alpha = lora_sd.get(block_down_name + ".alpha", None)
weights_loaded = lora_down_weight is not None and lora_up_weight is not None
if weights_loaded:
conv2d = len(lora_down_weight.size()) == 4
old_rank = lora_down_weight.size()[0]
max_old_rank = max(max_old_rank or 0, old_rank)
if lora_alpha is None:
scale = 1.0
else:
scale = lora_alpha / old_rank
if conv2d:
full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device)
param_dict = extract_conv(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale)
else:
full_weight_matrix = merge_linear(lora_down_weight, lora_up_weight, device)
param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale)
if verbose:
max_ratio = param_dict["max_ratio"]
sum_retained = param_dict["sum_retained"]
fro_retained = param_dict["fro_retained"]
if not np.isnan(fro_retained):
fro_list.append(float(fro_retained))
log_str = f"{block_down_name:75} | sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}"
tqdm.write(log_str)
verbose_str += log_str
if verbose and dynamic_method:
verbose_str += f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n"
else:
verbose_str += "\n"
new_alpha = param_dict["new_alpha"]
o_lora_sd[block_down_name + lora_down_name + weight_name] = param_dict["lora_down"].to(save_dtype).contiguous()
o_lora_sd[block_up_name + lora_up_name + weight_name] = param_dict["lora_up"].to(save_dtype).contiguous()
o_lora_sd[block_down_name + ".alpha"] = torch.tensor(param_dict["new_alpha"]).to(save_dtype)
block_down_name = None
block_up_name = None
lora_down_weight = None
lora_up_weight = None
weights_loaded = False
rank_list.append(param_dict["new_rank"])
del param_dict
pbar.update(1)
if verbose:
print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}")
return o_lora_sd, max_old_rank, new_alpha, rank_list