Initial testing for me shows that the RMSNorm from flash_attn.ops.triton.layer_norm is ~8-10% faster, apex is untested as I don't currently have it installed.
658 lines
22 KiB
Python
658 lines
22 KiB
Python
from typing import Dict, List, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from .layers import (
|
|
FeedForward,
|
|
PatchEmbed,
|
|
TimestepEmbedder,
|
|
)
|
|
|
|
|
|
from .mod_rmsnorm import modulated_rmsnorm
|
|
from .residual_tanh_gated_rmsnorm import residual_tanh_gated_rmsnorm
|
|
from .rope_mixed import compute_mixed_rotation, create_position_matrix
|
|
from .temporal_rope import apply_rotary_emb_qk_real
|
|
from .utils import pool_tokens, modulate
|
|
|
|
try:
|
|
from flash_attn import flash_attn_func
|
|
FLASH_ATTN_IS_AVAILABLE = True
|
|
except ImportError:
|
|
FLASH_ATTN_IS_AVAILABLE = False
|
|
try:
|
|
from sageattention import sageattn
|
|
SAGEATTN_IS_AVAILABLE = True
|
|
except ImportError:
|
|
SAGEATTN_IS_AVAILABLE = False
|
|
|
|
from torch.nn.attention import sdpa_kernel, SDPBackend
|
|
|
|
backends = []
|
|
backends.append(SDPBackend.CUDNN_ATTENTION)
|
|
backends.append(SDPBackend.EFFICIENT_ATTENTION)
|
|
backends.append(SDPBackend.MATH)
|
|
|
|
import comfy.model_management as mm
|
|
from comfy.ldm.modules.attention import optimized_attention
|
|
|
|
class AttentionPool(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
output_dim: int = None,
|
|
device: Optional[torch.device] = None,
|
|
):
|
|
"""
|
|
Args:
|
|
spatial_dim (int): Number of tokens in sequence length.
|
|
embed_dim (int): Dimensionality of input tokens.
|
|
num_heads (int): Number of attention heads.
|
|
output_dim (int): Dimensionality of output tokens. Defaults to embed_dim.
|
|
"""
|
|
super().__init__()
|
|
self.num_heads = num_heads
|
|
self.to_kv = nn.Linear(embed_dim, 2 * embed_dim, device=device)
|
|
self.to_q = nn.Linear(embed_dim, embed_dim, device=device)
|
|
self.to_out = nn.Linear(embed_dim, output_dim or embed_dim, device=device)
|
|
|
|
def forward(self, x, mask):
|
|
"""
|
|
Args:
|
|
x (torch.Tensor): (B, L, D) tensor of input tokens.
|
|
mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding.
|
|
|
|
NOTE: We assume x does not require gradients.
|
|
|
|
Returns:
|
|
x (torch.Tensor): (B, D) tensor of pooled tokens.
|
|
"""
|
|
D = x.size(2)
|
|
|
|
# Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
|
|
attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L).
|
|
attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L).
|
|
|
|
# Average non-padding token features. These will be used as the query.
|
|
x_pool = pool_tokens(x, mask, keepdim=True) # (B, 1, D)
|
|
|
|
# Concat pooled features to input sequence.
|
|
x = torch.cat([x_pool, x], dim=1) # (B, L+1, D)
|
|
|
|
# Compute queries, keys, values. Only the mean token is used to create a query.
|
|
kv = self.to_kv(x) # (B, L+1, 2 * D)
|
|
q = self.to_q(x[:, 0]) # (B, D)
|
|
|
|
# Extract heads.
|
|
head_dim = D // self.num_heads
|
|
kv = kv.unflatten(2, (2, self.num_heads, head_dim)) # (B, 1+L, 2, H, head_dim)
|
|
kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim)
|
|
k, v = kv.unbind(2) # (B, H, 1+L, head_dim)
|
|
q = q.unflatten(1, (self.num_heads, head_dim)) # (B, H, head_dim)
|
|
q = q.unsqueeze(2) # (B, H, 1, head_dim)
|
|
|
|
# Compute attention.
|
|
x = F.scaled_dot_product_attention(
|
|
q, k, v, attn_mask=attn_mask, dropout_p=0.0
|
|
) # (B, H, 1, head_dim)
|
|
|
|
# Concatenate heads and run output.
|
|
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
|
|
x = self.to_out(x)
|
|
return x
|
|
|
|
class AsymmetricAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim_x: int,
|
|
dim_y: int,
|
|
num_heads: int = 8,
|
|
qkv_bias: bool = True,
|
|
qk_norm: bool = False,
|
|
attn_drop: float = 0.0,
|
|
update_y: bool = True,
|
|
out_bias: bool = True,
|
|
attend_to_padding: bool = False,
|
|
softmax_scale: Optional[float] = None,
|
|
device: Optional[torch.device] = None,
|
|
attention_mode: str = "sdpa",
|
|
rms_norm_func: bool = False,
|
|
|
|
):
|
|
super().__init__()
|
|
self.dim_x = dim_x
|
|
self.dim_y = dim_y
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim_x // num_heads
|
|
self.attn_drop = attn_drop
|
|
self.update_y = update_y
|
|
self.attend_to_padding = attend_to_padding
|
|
self.softmax_scale = softmax_scale
|
|
self.attention_mode = attention_mode
|
|
self.device = device
|
|
if dim_x % num_heads != 0:
|
|
raise ValueError(
|
|
f"dim_x={dim_x} should be divisible by num_heads={num_heads}"
|
|
)
|
|
|
|
# Input layers.
|
|
self.qkv_bias = qkv_bias
|
|
self.qkv_x = nn.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device)
|
|
# Project text features to match visual features (dim_y -> dim_x)
|
|
self.qkv_y = nn.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device)
|
|
|
|
# Query and key normalization for stability.
|
|
assert qk_norm
|
|
if rms_norm_func == "flash_attn_triton": #use the same rms_norm_func
|
|
try:
|
|
from flash_attn.ops.triton.layer_norm import RMSNorm as FlashTritonRMSNorm #slightly faster
|
|
@torch.compiler.disable() #cause NaNs when compiled for some reason
|
|
class RMSNorm(FlashTritonRMSNorm):
|
|
pass
|
|
except:
|
|
raise ImportError("Flash Triton RMSNorm not available.")
|
|
elif rms_norm_func == "flash_attn":
|
|
try:
|
|
from flash_attn.ops.rms_norm import RMSNorm as FlashRMSNorm #slightly faster
|
|
@torch.compiler.disable() #cause NaNs when compiled for some reason
|
|
class RMSNorm(FlashRMSNorm):
|
|
pass
|
|
except:
|
|
raise ImportError("Flash RMSNorm not available.")
|
|
elif rms_norm_func == "apex":
|
|
from apex.normalization import FusedRMSNorm as ApexRMSNorm
|
|
class RMSNorm(ApexRMSNorm):
|
|
pass
|
|
else:
|
|
from .layers import RMSNorm
|
|
self.q_norm_x = RMSNorm(self.head_dim, device=device)
|
|
self.k_norm_x = RMSNorm(self.head_dim, device=device)
|
|
self.q_norm_y = RMSNorm(self.head_dim, device=device)
|
|
self.k_norm_y = RMSNorm(self.head_dim, device=device)
|
|
|
|
# Output layers. y features go back down from dim_x -> dim_y.
|
|
self.proj_x = nn.Linear(dim_x, dim_x, bias=out_bias, device=device)
|
|
self.proj_y = (
|
|
nn.Linear(dim_x, dim_y, bias=out_bias, device=device)
|
|
if update_y
|
|
else nn.Identity()
|
|
)
|
|
|
|
def flash_attention(self, q, k ,v):
|
|
q = q.permute(0, 2, 1, 3)
|
|
k = k.permute(0, 2, 1, 3)
|
|
v = v.permute(0, 2, 1, 3)
|
|
b, _, _, dim_head = q.shape
|
|
with torch.autocast(mm.get_autocast_device(self.device), enabled=False):
|
|
out: torch.Tensor = flash_attn_func( #q: (batch_size, seqlen, nheads, headdim)
|
|
q, k, v,
|
|
dropout_p=0.0,
|
|
softmax_scale=self.softmax_scale,
|
|
) # (total, local_heads, head_dim)
|
|
out = out.permute(0, 2, 1, 3)
|
|
return out.transpose(1, 2).reshape(b, -1, self.num_heads * dim_head)
|
|
|
|
def sdpa_attention(self, q, k, v):
|
|
b, _, _, dim_head = q.shape
|
|
with torch.autocast(mm.get_autocast_device(self.device), enabled=False):
|
|
with sdpa_kernel(backends):
|
|
out = F.scaled_dot_product_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=None,
|
|
dropout_p=0.0,
|
|
is_causal=False
|
|
)
|
|
return out.transpose(1, 2).reshape(b, -1, self.num_heads * dim_head)
|
|
|
|
def sage_attention(self, q, k, v):
|
|
b, _, _, dim_head = q.shape
|
|
with torch.autocast(mm.get_autocast_device(self.device), enabled=False):
|
|
out = sageattn(
|
|
q,
|
|
k,
|
|
v,
|
|
attn_mask=None,
|
|
dropout_p=0.0,
|
|
is_causal=False
|
|
)
|
|
return out.transpose(1, 2).reshape(b, -1, self.num_heads * dim_head)
|
|
|
|
def comfy_attention(self, q, k, v):
|
|
with torch.autocast(mm.get_autocast_device(self.device), enabled=False):
|
|
out = optimized_attention(
|
|
q,
|
|
k,
|
|
v,
|
|
heads = self.num_heads,
|
|
skip_reshape=True
|
|
)
|
|
return out
|
|
|
|
def run_attention(
|
|
self,
|
|
q,
|
|
k,
|
|
v,
|
|
):
|
|
if self.attention_mode == "flash_attn":
|
|
out = self.flash_attention(q, k ,v)
|
|
elif self.attention_mode == "sdpa":
|
|
out = self.sdpa_attention(q, k, v)
|
|
elif self.attention_mode == "sage_attn":
|
|
out = self.sage_attention(q, k, v)
|
|
elif self.attention_mode == "comfy":
|
|
out = self.comfy_attention(q, k, v)
|
|
return out
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor, # (B, N, dim_x)
|
|
y: torch.Tensor, # (B, L, dim_y)
|
|
*,
|
|
scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm.
|
|
scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm.
|
|
num_tokens,
|
|
**rope_rotation,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
|
|
rope_cos = rope_rotation.get("rope_cos")
|
|
rope_sin = rope_rotation.get("rope_sin")
|
|
|
|
# Pre-norm for visual features
|
|
x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size
|
|
# Process text features
|
|
y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y)
|
|
q_y, k_y, v_y = self.qkv_y(y).view(y.shape[0], y.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
|
|
|
|
q_y = self.q_norm_y(q_y)
|
|
k_y = self.k_norm_y(k_y)
|
|
|
|
# Split qkv_x into q, k, v
|
|
q_x, k_x, v_x = self.qkv_x(x).view(x.shape[0], x.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim)
|
|
q_x = self.q_norm_x(q_x)
|
|
q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin)
|
|
k_x = self.k_norm_x(k_x)
|
|
k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin)
|
|
|
|
q = torch.cat([q_x, q_y[:, :num_tokens]], dim=1).transpose(1, 2)
|
|
k = torch.cat([k_x, k_y[:, :num_tokens]], dim=1).transpose(1, 2)
|
|
v = torch.cat([v_x, v_y[:, :num_tokens]], dim=1).transpose(1, 2)
|
|
|
|
xy = self.run_attention(q, k, v)
|
|
|
|
x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1)
|
|
x = self.proj_x(x)
|
|
o = torch.zeros(y.shape[0], q_y.shape[1], y.shape[-1], device=y.device, dtype=y.dtype)
|
|
o[:, :y.shape[1]] = y
|
|
|
|
y = self.proj_y(o)
|
|
return x, y
|
|
|
|
class AsymmetricJointBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size_x: int,
|
|
hidden_size_y: int,
|
|
num_heads: int,
|
|
*,
|
|
mlp_ratio_x: float = 8.0, # Ratio of hidden size to d_model for MLP for visual tokens.
|
|
mlp_ratio_y: float = 4.0, # Ratio of hidden size to d_model for MLP for text tokens.
|
|
update_y: bool = True, # Whether to update text tokens in this block.
|
|
device: Optional[torch.device] = None,
|
|
attention_mode: str = "sdpa",
|
|
rms_norm_func: str = "default",
|
|
**block_kwargs,
|
|
):
|
|
super().__init__()
|
|
self.update_y = update_y
|
|
self.hidden_size_x = hidden_size_x
|
|
self.hidden_size_y = hidden_size_y
|
|
self.attention_mode = attention_mode
|
|
self.mod_x = nn.Linear(hidden_size_x, 4 * hidden_size_x, device=device)
|
|
if self.update_y:
|
|
self.mod_y = nn.Linear(hidden_size_x, 4 * hidden_size_y, device=device)
|
|
else:
|
|
self.mod_y = nn.Linear(hidden_size_x, hidden_size_y, device=device)
|
|
|
|
# Self-attention:
|
|
self.attn = AsymmetricAttention(
|
|
hidden_size_x,
|
|
hidden_size_y,
|
|
num_heads=num_heads,
|
|
update_y=update_y,
|
|
device=device,
|
|
attention_mode=attention_mode,
|
|
rms_norm_func=rms_norm_func,
|
|
**block_kwargs,
|
|
)
|
|
|
|
# MLP.
|
|
mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x)
|
|
assert mlp_hidden_dim_x == int(1536 * 8)
|
|
self.mlp_x = FeedForward(
|
|
in_features=hidden_size_x,
|
|
hidden_size=mlp_hidden_dim_x,
|
|
multiple_of=256,
|
|
ffn_dim_multiplier=None,
|
|
device=device,
|
|
)
|
|
|
|
# MLP for text not needed in last block.
|
|
if self.update_y:
|
|
mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y)
|
|
self.mlp_y = FeedForward(
|
|
in_features=hidden_size_y,
|
|
hidden_size=mlp_hidden_dim_y,
|
|
multiple_of=256,
|
|
ffn_dim_multiplier=None,
|
|
device=device,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
c: torch.Tensor,
|
|
y: torch.Tensor,
|
|
**attn_kwargs,
|
|
):
|
|
"""Forward pass of a block.
|
|
|
|
Args:
|
|
x: (B, N, dim) tensor of visual tokens
|
|
c: (B, dim) tensor of conditioned features
|
|
y: (B, L, dim) tensor of text tokens
|
|
num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens
|
|
|
|
Returns:
|
|
x: (B, N, dim) tensor of visual tokens after block
|
|
y: (B, L, dim) tensor of text tokens after block
|
|
"""
|
|
N = x.size(1)
|
|
|
|
c = F.silu(c)
|
|
mod_x = self.mod_x(c)
|
|
scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1)
|
|
|
|
mod_y = self.mod_y(c)
|
|
if self.update_y:
|
|
scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1)
|
|
else:
|
|
scale_msa_y = mod_y
|
|
|
|
# Self-attention block.
|
|
x_attn, y_attn = self.attn(
|
|
x,
|
|
y,
|
|
scale_x=scale_msa_x,
|
|
scale_y=scale_msa_y,
|
|
**attn_kwargs,
|
|
)
|
|
|
|
assert x_attn.size(1) == N
|
|
x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x)
|
|
if self.update_y:
|
|
y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y)
|
|
|
|
# MLP block.
|
|
x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x)
|
|
if self.update_y:
|
|
y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y)
|
|
|
|
return x, y
|
|
|
|
def ff_block_x(self, x, scale_x, gate_x):
|
|
x_mod = modulated_rmsnorm(x, scale_x)
|
|
x_res = self.mlp_x(x_mod)
|
|
x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) # Sandwich norm
|
|
return x
|
|
|
|
def ff_block_y(self, y, scale_y, gate_y):
|
|
y_mod = modulated_rmsnorm(y, scale_y)
|
|
y_res = self.mlp_y(y_mod)
|
|
y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) # Sandwich norm
|
|
return y
|
|
|
|
|
|
class FinalLayer(nn.Module):
|
|
"""
|
|
The final layer of DiT.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
patch_size,
|
|
out_channels,
|
|
device: Optional[torch.device] = None,
|
|
):
|
|
super().__init__()
|
|
self.norm_final = nn.LayerNorm(
|
|
hidden_size, elementwise_affine=False, eps=1e-6, device=device
|
|
)
|
|
self.mod = nn.Linear(hidden_size, 2 * hidden_size, device=device)
|
|
self.linear = nn.Linear(
|
|
hidden_size, patch_size * patch_size * out_channels, device=device
|
|
)
|
|
|
|
def forward(self, x, c):
|
|
c = F.silu(c)
|
|
shift, scale = self.mod(c).chunk(2, dim=1)
|
|
x = modulate(self.norm_final(x), shift, scale)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class AsymmDiTJoint(nn.Module):
|
|
"""
|
|
Diffusion model with a Transformer backbone.
|
|
|
|
Ingests text embeddings instead of a label.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
patch_size=2,
|
|
in_channels=4,
|
|
hidden_size_x=1152,
|
|
hidden_size_y=1152,
|
|
depth=48,
|
|
num_heads=16,
|
|
mlp_ratio_x=8.0,
|
|
mlp_ratio_y=4.0,
|
|
t5_feat_dim: int = 4096,
|
|
t5_token_length: int = 256,
|
|
patch_embed_bias: bool = True,
|
|
timestep_mlp_bias: bool = True,
|
|
timestep_scale: Optional[float] = None,
|
|
use_extended_posenc: bool = False,
|
|
rope_theta: float = 10000.0,
|
|
device: Optional[torch.device] = None,
|
|
attention_mode: str = "sdpa",
|
|
rms_norm_func: str = "default",
|
|
**block_kwargs,
|
|
):
|
|
super().__init__()
|
|
|
|
|
|
self.in_channels = in_channels
|
|
self.out_channels = in_channels
|
|
self.patch_size = patch_size
|
|
self.num_heads = num_heads
|
|
self.hidden_size_x = hidden_size_x
|
|
self.hidden_size_y = hidden_size_y
|
|
self.head_dim = (
|
|
hidden_size_x // num_heads
|
|
) # Head dimension and count is determined by visual.
|
|
self.use_extended_posenc = use_extended_posenc
|
|
self.t5_token_length = t5_token_length
|
|
self.t5_feat_dim = t5_feat_dim
|
|
self.rope_theta = (
|
|
rope_theta # Scaling factor for frequency computation for temporal RoPE.
|
|
)
|
|
|
|
self.x_embedder = PatchEmbed(
|
|
patch_size=patch_size,
|
|
in_chans=in_channels,
|
|
embed_dim=hidden_size_x,
|
|
bias=patch_embed_bias,
|
|
device=device,
|
|
)
|
|
# Conditionings
|
|
# Timestep
|
|
self.t_embedder = TimestepEmbedder(
|
|
hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale
|
|
)
|
|
|
|
# Caption Pooling (T5)
|
|
self.t5_y_embedder = AttentionPool(
|
|
t5_feat_dim, num_heads=8, output_dim=hidden_size_x, device=device
|
|
)
|
|
|
|
# Dense Embedding Projection (T5)
|
|
self.t5_yproj = nn.Linear(
|
|
t5_feat_dim, hidden_size_y, bias=True, device=device
|
|
)
|
|
|
|
# Initialize pos_frequencies as an empty parameter.
|
|
self.pos_frequencies = nn.Parameter(
|
|
torch.empty(3, self.num_heads, self.head_dim // 2, device=device)
|
|
)
|
|
|
|
# for depth 48:
|
|
# b = 0: AsymmetricJointBlock, update_y=True
|
|
# b = 1: AsymmetricJointBlock, update_y=True
|
|
# ...
|
|
# b = 46: AsymmetricJointBlock, update_y=True
|
|
# b = 47: AsymmetricJointBlock, update_y=False. No need to update text features.
|
|
blocks = []
|
|
for b in range(depth):
|
|
# Joint multi-modal block
|
|
update_y = b < depth - 1
|
|
block = AsymmetricJointBlock(
|
|
hidden_size_x,
|
|
hidden_size_y,
|
|
num_heads,
|
|
mlp_ratio_x=mlp_ratio_x,
|
|
mlp_ratio_y=mlp_ratio_y,
|
|
update_y=update_y,
|
|
device=device,
|
|
attention_mode=attention_mode,
|
|
rms_norm_func=rms_norm_func,
|
|
**block_kwargs,
|
|
)
|
|
|
|
blocks.append(block)
|
|
self.blocks = nn.ModuleList(blocks)
|
|
|
|
self.final_layer = FinalLayer(
|
|
hidden_size_x, patch_size, self.out_channels, device=device
|
|
)
|
|
|
|
def embed_x(self, x: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
x: (B, C=12, T, H, W) tensor of visual tokens
|
|
|
|
Returns:
|
|
x: (B, C=3072, N) tensor of visual tokens with positional embedding.
|
|
"""
|
|
return self.x_embedder(x) # Convert BcTHW to BCN
|
|
|
|
def prepare(
|
|
self,
|
|
x: torch.Tensor,
|
|
sigma: torch.Tensor,
|
|
t5_feat: torch.Tensor,
|
|
t5_mask: torch.Tensor,
|
|
):
|
|
"""Prepare input and conditioning embeddings."""
|
|
#("X", x.shape)
|
|
# Visual patch embeddings with positional encoding.
|
|
T, H, W = x.shape[-3:]
|
|
pH, pW = H // self.patch_size, W // self.patch_size
|
|
x = self.embed_x(x) # (B, N, D), where N = T * H * W / patch_size ** 2
|
|
assert x.ndim == 3
|
|
|
|
# Construct position array of size [N, 3].
|
|
# pos[:, 0] is the frame index for each location,
|
|
# pos[:, 1] is the row index for each location, and
|
|
# pos[:, 2] is the column index for each location.
|
|
pH, pW = H // self.patch_size, W // self.patch_size
|
|
N = T * pH * pW
|
|
assert x.size(1) == N
|
|
pos = create_position_matrix(T, pH=pH, pW=pW, device=x.device, dtype=torch.float32) # (N, 3)
|
|
rope_cos, rope_sin = compute_mixed_rotation(freqs=self.pos_frequencies, pos=pos) # Each are (N, num_heads, dim // 2)
|
|
|
|
# Global vector embedding for conditionings.
|
|
c_t = self.t_embedder(1 - sigma) # (B, D)
|
|
|
|
# Pool T5 tokens using attention pooler
|
|
# Note y_feat[1] contains T5 token features.
|
|
t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D)
|
|
|
|
c = c_t + t5_y_pool
|
|
|
|
y_feat = self.t5_yproj(t5_feat) # (B, L, t5_feat_dim) --> (B, L, D)
|
|
|
|
return x, c, y_feat, rope_cos, rope_sin
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
sigma: torch.Tensor,
|
|
y_feat: List[torch.Tensor],
|
|
y_mask: List[torch.Tensor],
|
|
rope_cos: torch.Tensor = None,
|
|
rope_sin: torch.Tensor = None,
|
|
packed_indices: Optional[dict] = None,
|
|
):
|
|
"""Forward pass of DiT.
|
|
|
|
Args:
|
|
x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images)
|
|
sigma: (B,) tensor of noise standard deviations
|
|
y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048)
|
|
y_mask: List((B, L) boolean tensor indicating which tokens are not padding)
|
|
"""
|
|
B, _, T, H, W = x.shape
|
|
|
|
# Use EFFICIENT_ATTENTION backend for T5 pooling, since we have a mask.
|
|
# Have to call sdpa_kernel outside of a torch.compile region.
|
|
num_tokens = max(1, torch.sum(y_mask[0]).item())
|
|
with sdpa_kernel(backends):
|
|
x, c, y_feat, rope_cos, rope_sin = self.prepare(
|
|
x, sigma, y_feat[0], y_mask[0]
|
|
)
|
|
del y_mask
|
|
|
|
for i, block in enumerate(self.blocks):
|
|
x, y_feat = block(
|
|
x,
|
|
c,
|
|
y_feat,
|
|
rope_cos=rope_cos,
|
|
rope_sin=rope_sin,
|
|
num_tokens=num_tokens,
|
|
) # (B, M, D), (B, L, D)
|
|
del y_feat # Final layers don't use dense text features.
|
|
|
|
x = self.final_layer(x, c) # (B, M, patch_size ** 2 * out_channels)
|
|
|
|
hp = H // self.patch_size
|
|
wp = W // self.patch_size
|
|
p1 = self.patch_size
|
|
p2 = self.patch_size
|
|
c = self.out_channels
|
|
|
|
x = x.view(B, T, hp, wp, p1, p2, c)
|
|
x = x.permute(0, 6, 1, 2, 4, 3, 5)
|
|
x = x.reshape(B, c, T, hp * p1, wp * p2)
|
|
|
|
return x
|