Merge 0f6f3c93fda308e1c10badccf9498007946682ce into 76f18e955dcbc88ed13d6802194fd897927f93e5

This commit is contained in:
vivienfanghuagood 2025-12-07 01:14:14 +09:00 committed by GitHub
commit 2570c6c351
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 92 additions and 2 deletions

View File

@ -112,6 +112,7 @@ attn_group.add_argument("--use-split-cross-attention", action="store_true", help
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
attn_group.add_argument("--use-aiter-attention", action="store_true", help="Use aiter attention.")
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")

View File

@ -39,6 +39,16 @@ except ImportError:
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
exit(-1)
AITER_ATTENTION_IS_AVAILABLE = False
try:
import aiter
AITER_ATTENTION_IS_AVAILABLE = True
except ImportError:
if model_management.aiter_attention_enabled():
logging.error("\n\nTo use the `--use-aiter-attention` feature, the `aiter` package must be installed first.")
logging.error("Installation instructions: https://github.com/ROCm/aiter/tree/main?tab=readme-ov-file#installation")
exit(-1)
REGISTERED_ATTENTION_FUNCTIONS = {}
def register_attention_function(name: str, func: Callable):
# avoid replacing existing functions
@ -615,6 +625,7 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
except Exception as e:
logging.warning(f"Flash Attention failed, using default SDPA: {e}")
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
if not skip_output_reshape:
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
@ -622,11 +633,86 @@ def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape
return out
@wrap_attn
def attention_aiter(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
# Store original inputs for fallback
q_orig, k_orig, v_orig, mask_orig = q, k, v, mask
if skip_reshape:
b, _, _, dim_head = q.shape
q, k, v = map(
lambda t: t.transpose(1, 2),
(q, k, v),
)
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head),
(q, k, v),
)
# Convert mask to [sq, sk] format for aiter bias
bias = None
if mask is not None:
if mask.ndim == 2:
bias = mask
elif mask.ndim == 3:
seqlen_q = q.shape[1]
if mask.shape[-2] == 1:
# [1, 1, sk] -> expand to [sq, sk]
bias = mask.squeeze(0).expand(seqlen_q, -1)
else:
# [batch, sq, sk] -> take first batch
bias = mask[0]
elif mask.ndim == 4:
# [batch, heads, sq, sk] -> take first batch and head
bias = mask[0, 0]
try:
# aiter.flash_attn_func expects (batch, seqlen, nheads, headdim) format
out = aiter.flash_attn_func(
q,
k,
v,
dropout_p=0.0,
softmax_scale=None,
causal=False,
window_size=(-1, -1),
bias=bias,
alibi_slopes=None,
deterministic=False,
return_lse=False,
return_attn_probs=False,
cu_seqlens_q=None,
cu_seqlens_kv=None,
)
if skip_output_reshape:
# output is (batch, seqlen, nheads, headdim), need (batch, nheads, seqlen, headdim)
out = out.transpose(1, 2)
else:
# reshape from (batch, seqlen, nheads, headdim) to (batch, seqlen, nheads * headdim)
out = out.reshape(b, -1, heads * dim_head)
return out
except Exception as e:
logging.warning(f"Aiter Attention failed, falling back to pytorch attention: {e}")
# Fallback to attention_pytorch with original inputs
return attention_pytorch(q_orig, k_orig, v_orig, heads, mask=mask_orig,
attn_precision=attn_precision, skip_reshape=skip_reshape,
skip_output_reshape=skip_output_reshape, **kwargs)
optimized_attention = attention_basic
if model_management.sage_attention_enabled():
logging.info("Using sage attention")
optimized_attention = attention_sage
elif model_management.aiter_attention_enabled():
logging.info("Using aiter attention")
optimized_attention = attention_aiter
elif model_management.xformers_enabled():
logging.info("Using xformers attention")
optimized_attention = attention_xformers
@ -650,6 +736,8 @@ optimized_attention_masked = optimized_attention
# register core-supported attention functions
if SAGE_ATTENTION_IS_AVAILABLE:
register_attention_function("sage", attention_sage)
if AITER_ATTENTION_IS_AVAILABLE:
register_attention_function("aiter", attention_aiter)
if FLASH_ATTENTION_IS_AVAILABLE:
register_attention_function("flash", attention_flash)
if model_management.xformers_enabled():
@ -1093,5 +1181,3 @@ class SpatialVideoTransformer(SpatialTransformer):
x = self.proj_out(x)
out = x + x_in
return out

View File

@ -1189,6 +1189,9 @@ def unpin_memory(tensor):
def sage_attention_enabled():
return args.use_sage_attention
def aiter_attention_enabled():
return args.use_aiter_attention
def flash_attention_enabled():
return args.use_flash_attention