feat(api-nodes): add Topaz API nodes (#10755)

This commit is contained in:
Alexander Piskun 2025-11-20 03:44:04 +02:00 committed by GitHub
parent 7601e89255
commit 394348f5ca
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 560 additions and 4 deletions

View File

@ -0,0 +1,133 @@
from typing import Optional, Union
from pydantic import BaseModel, Field
class ImageEnhanceRequest(BaseModel):
model: str = Field("Reimagine")
output_format: str = Field("jpeg")
subject_detection: str = Field("All")
face_enhancement: bool = Field(True)
face_enhancement_creativity: float = Field(0, description="Is ignored if face_enhancement is false")
face_enhancement_strength: float = Field(0.8, description="Is ignored if face_enhancement is false")
source_url: str = Field(...)
output_width: Optional[int] = Field(None)
output_height: Optional[int] = Field(None)
crop_to_fill: bool = Field(False)
prompt: Optional[str] = Field(None, description="Text prompt for creative upscaling guidance")
creativity: int = Field(3, description="Creativity settings range from 1 to 9")
face_preservation: str = Field("true", description="To preserve the identity of characters")
color_preservation: str = Field("true", description="To preserve the original color")
class ImageAsyncTaskResponse(BaseModel):
process_id: str = Field(...)
class ImageStatusResponse(BaseModel):
process_id: str = Field(...)
status: str = Field(...)
progress: Optional[int] = Field(None)
credits: int = Field(...)
class ImageDownloadResponse(BaseModel):
download_url: str = Field(...)
expiry: int = Field(...)
class Resolution(BaseModel):
width: int = Field(...)
height: int = Field(...)
class CreateCreateVideoRequestSource(BaseModel):
container: str = Field(...)
size: int = Field(..., description="Size of the video file in bytes")
duration: int = Field(..., description="Duration of the video file in seconds")
frameCount: int = Field(..., description="Total number of frames in the video")
frameRate: int = Field(...)
resolution: Resolution = Field(...)
class VideoFrameInterpolationFilter(BaseModel):
model: str = Field(...)
slowmo: Optional[int] = Field(None)
fps: int = Field(...)
duplicate: bool = Field(...)
duplicate_threshold: float = Field(...)
class VideoEnhancementFilter(BaseModel):
model: str = Field(...)
auto: Optional[str] = Field(None, description="Auto, Manual, Relative")
focusFixLevel: Optional[str] = Field(None, description="Downscales video input for correction of blurred subjects")
compression: Optional[float] = Field(None, description="Strength of compression recovery")
details: Optional[float] = Field(None, description="Amount of detail reconstruction")
prenoise: Optional[float] = Field(None, description="Amount of noise to add to input to reduce over-smoothing")
noise: Optional[float] = Field(None, description="Amount of noise reduction")
halo: Optional[float] = Field(None, description="Amount of halo reduction")
preblur: Optional[float] = Field(None, description="Anti-aliasing and deblurring strength")
blur: Optional[float] = Field(None, description="Amount of sharpness applied")
grain: Optional[float] = Field(None, description="Grain after AI model processing")
grainSize: Optional[float] = Field(None, description="Size of generated grain")
recoverOriginalDetailValue: Optional[float] = Field(None, description="Source details into the output video")
creativity: Optional[str] = Field(None, description="Creativity level(high, low) for slc-1 only")
isOptimizedMode: Optional[bool] = Field(None, description="Set to true for Starlight Creative (slc-1) only")
class OutputInformationVideo(BaseModel):
resolution: Resolution = Field(...)
frameRate: int = Field(...)
audioCodec: Optional[str] = Field(..., description="Required if audioTransfer is Copy or Convert")
audioTransfer: str = Field(..., description="Copy, Convert, None")
dynamicCompressionLevel: str = Field(..., description="Low, Mid, High")
class Overrides(BaseModel):
isPaidDiffusion: bool = Field(True)
class CreateVideoRequest(BaseModel):
source: CreateCreateVideoRequestSource = Field(...)
filters: list[Union[VideoFrameInterpolationFilter, VideoEnhancementFilter]] = Field(...)
output: OutputInformationVideo = Field(...)
overrides: Overrides = Field(Overrides(isPaidDiffusion=True))
class CreateVideoResponse(BaseModel):
requestId: str = Field(...)
class VideoAcceptResponse(BaseModel):
uploadId: str = Field(...)
urls: list[str] = Field(...)
class VideoCompleteUploadRequestPart(BaseModel):
partNum: int = Field(...)
eTag: str = Field(...)
class VideoCompleteUploadRequest(BaseModel):
uploadResults: list[VideoCompleteUploadRequestPart] = Field(...)
class VideoCompleteUploadResponse(BaseModel):
message: str = Field(..., description="Confirmation message")
class VideoStatusResponseEstimates(BaseModel):
cost: list[int] = Field(...)
class VideoStatusResponseDownloadUrl(BaseModel):
url: str = Field(...)
class VideoStatusResponse(BaseModel):
status: str = Field(...)
estimates: Optional[VideoStatusResponseEstimates] = Field(None)
progress: Optional[float] = Field(None)
message: Optional[str] = Field("")
download: Optional[VideoStatusResponseDownloadUrl] = Field(None)

View File

@ -0,0 +1,421 @@
import builtins
from io import BytesIO
import aiohttp
import torch
from typing_extensions import override
from comfy_api.input.video_types import VideoInput
from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.apis import topaz_api
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
download_url_to_video_output,
get_fs_object_size,
get_number_of_images,
poll_op,
sync_op,
upload_images_to_comfyapi,
validate_container_format_is_mp4,
)
UPSCALER_MODELS_MAP = {
"Starlight (Astra) Fast": "slf-1",
"Starlight (Astra) Creative": "slc-1",
}
UPSCALER_VALUES_MAP = {
"FullHD (1080p)": 1920,
"4K (2160p)": 3840,
}
class TopazImageEnhance(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TopazImageEnhance",
display_name="Topaz Image Enhance",
category="api node/image/Topaz",
description="Industry-standard upscaling and image enhancement.",
inputs=[
IO.Combo.Input("model", options=["Reimagine"]),
IO.Image.Input("image"),
IO.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Optional text prompt for creative upscaling guidance.",
optional=True,
),
IO.Combo.Input(
"subject_detection",
options=["All", "Foreground", "Background"],
optional=True,
),
IO.Boolean.Input(
"face_enhancement",
default=True,
optional=True,
tooltip="Enhance faces (if present) during processing.",
),
IO.Float.Input(
"face_enhancement_creativity",
default=0.0,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.number,
optional=True,
tooltip="Set the creativity level for face enhancement.",
),
IO.Float.Input(
"face_enhancement_strength",
default=1.0,
min=0.0,
max=1.0,
step=0.01,
display_mode=IO.NumberDisplay.number,
optional=True,
tooltip="Controls how sharp enhanced faces are relative to the background.",
),
IO.Boolean.Input(
"crop_to_fill",
default=False,
optional=True,
tooltip="By default, the image is letterboxed when the output aspect ratio differs. "
"Enable to crop the image to fill the output dimensions.",
),
IO.Int.Input(
"output_width",
default=0,
min=0,
max=32000,
step=1,
display_mode=IO.NumberDisplay.number,
optional=True,
tooltip="Zero value means to calculate automatically (usually it will be original size or output_height if specified).",
),
IO.Int.Input(
"output_height",
default=0,
min=0,
max=32000,
step=1,
display_mode=IO.NumberDisplay.number,
optional=True,
tooltip="Zero value means to output in the same height as original or output width.",
),
IO.Int.Input(
"creativity",
default=3,
min=1,
max=9,
step=1,
display_mode=IO.NumberDisplay.slider,
optional=True,
),
IO.Boolean.Input(
"face_preservation",
default=True,
optional=True,
tooltip="Preserve subjects' facial identity.",
),
IO.Boolean.Input(
"color_preservation",
default=True,
optional=True,
tooltip="Preserve the original colors.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
image: torch.Tensor,
prompt: str = "",
subject_detection: str = "All",
face_enhancement: bool = True,
face_enhancement_creativity: float = 1.0,
face_enhancement_strength: float = 0.8,
crop_to_fill: bool = False,
output_width: int = 0,
output_height: int = 0,
creativity: int = 3,
face_preservation: bool = True,
color_preservation: bool = True,
) -> IO.NodeOutput:
if get_number_of_images(image) != 1:
raise ValueError("Only one input image is supported.")
download_url = await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png")
initial_response = await sync_op(
cls,
ApiEndpoint(path="/proxy/topaz/image/v1/enhance-gen/async", method="POST"),
response_model=topaz_api.ImageAsyncTaskResponse,
data=topaz_api.ImageEnhanceRequest(
model=model,
prompt=prompt,
subject_detection=subject_detection,
face_enhancement=face_enhancement,
face_enhancement_creativity=face_enhancement_creativity,
face_enhancement_strength=face_enhancement_strength,
crop_to_fill=crop_to_fill,
output_width=output_width if output_width else None,
output_height=output_height if output_height else None,
creativity=creativity,
face_preservation=str(face_preservation).lower(),
color_preservation=str(color_preservation).lower(),
source_url=download_url[0],
output_format="png",
),
content_type="multipart/form-data",
)
await poll_op(
cls,
poll_endpoint=ApiEndpoint(path=f"/proxy/topaz/image/v1/status/{initial_response.process_id}"),
response_model=topaz_api.ImageStatusResponse,
status_extractor=lambda x: x.status,
progress_extractor=lambda x: getattr(x, "progress", 0),
price_extractor=lambda x: x.credits * 0.08,
poll_interval=8.0,
max_poll_attempts=160,
estimated_duration=60,
)
results = await sync_op(
cls,
ApiEndpoint(path=f"/proxy/topaz/image/v1/download/{initial_response.process_id}"),
response_model=topaz_api.ImageDownloadResponse,
monitor_progress=False,
)
return IO.NodeOutput(await download_url_to_image_tensor(results.download_url))
class TopazVideoEnhance(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TopazVideoEnhance",
display_name="Topaz Video Enhance",
category="api node/video/Topaz",
description="Breathe new life into video with powerful upscaling and recovery technology.",
inputs=[
IO.Video.Input("video"),
IO.Boolean.Input("upscaler_enabled", default=True),
IO.Combo.Input("upscaler_model", options=list(UPSCALER_MODELS_MAP.keys())),
IO.Combo.Input("upscaler_resolution", options=list(UPSCALER_VALUES_MAP.keys())),
IO.Combo.Input(
"upscaler_creativity",
options=["low", "middle", "high"],
default="low",
tooltip="Creativity level (applies only to Starlight (Astra) Creative).",
optional=True,
),
IO.Boolean.Input("interpolation_enabled", default=False, optional=True),
IO.Combo.Input("interpolation_model", options=["apo-8"], default="apo-8", optional=True),
IO.Int.Input(
"interpolation_slowmo",
default=1,
min=1,
max=16,
display_mode=IO.NumberDisplay.number,
tooltip="Slow-motion factor applied to the input video. "
"For example, 2 makes the output twice as slow and doubles the duration.",
optional=True,
),
IO.Int.Input(
"interpolation_frame_rate",
default=60,
min=15,
max=240,
display_mode=IO.NumberDisplay.number,
tooltip="Output frame rate.",
optional=True,
),
IO.Boolean.Input(
"interpolation_duplicate",
default=False,
tooltip="Analyze the input for duplicate frames and remove them.",
optional=True,
),
IO.Float.Input(
"interpolation_duplicate_threshold",
default=0.01,
min=0.001,
max=0.1,
step=0.001,
display_mode=IO.NumberDisplay.number,
tooltip="Detection sensitivity for duplicate frames.",
optional=True,
),
IO.Combo.Input(
"dynamic_compression_level",
options=["Low", "Mid", "High"],
default="Low",
tooltip="CQP level.",
optional=True,
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
video: VideoInput,
upscaler_enabled: bool,
upscaler_model: str,
upscaler_resolution: str,
upscaler_creativity: str = "low",
interpolation_enabled: bool = False,
interpolation_model: str = "apo-8",
interpolation_slowmo: int = 1,
interpolation_frame_rate: int = 60,
interpolation_duplicate: bool = False,
interpolation_duplicate_threshold: float = 0.01,
dynamic_compression_level: str = "Low",
) -> IO.NodeOutput:
if upscaler_enabled is False and interpolation_enabled is False:
raise ValueError("There is nothing to do: both upscaling and interpolation are disabled.")
src_width, src_height = video.get_dimensions()
video_components = video.get_components()
src_frame_rate = int(video_components.frame_rate)
duration_sec = video.get_duration()
estimated_frames = int(duration_sec * src_frame_rate)
validate_container_format_is_mp4(video)
src_video_stream = video.get_stream_source()
target_width = src_width
target_height = src_height
target_frame_rate = src_frame_rate
filters = []
if upscaler_enabled:
target_width = UPSCALER_VALUES_MAP[upscaler_resolution]
target_height = UPSCALER_VALUES_MAP[upscaler_resolution]
filters.append(
topaz_api.VideoEnhancementFilter(
model=UPSCALER_MODELS_MAP[upscaler_model],
creativity=(upscaler_creativity if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None),
isOptimizedMode=(True if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None),
),
)
if interpolation_enabled:
target_frame_rate = interpolation_frame_rate
filters.append(
topaz_api.VideoFrameInterpolationFilter(
model=interpolation_model,
slowmo=interpolation_slowmo,
fps=interpolation_frame_rate,
duplicate=interpolation_duplicate,
duplicate_threshold=interpolation_duplicate_threshold,
),
)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/topaz/video/", method="POST"),
response_model=topaz_api.CreateVideoResponse,
data=topaz_api.CreateVideoRequest(
source=topaz_api.CreateCreateVideoRequestSource(
container="mp4",
size=get_fs_object_size(src_video_stream),
duration=int(duration_sec),
frameCount=estimated_frames,
frameRate=src_frame_rate,
resolution=topaz_api.Resolution(width=src_width, height=src_height),
),
filters=filters,
output=topaz_api.OutputInformationVideo(
resolution=topaz_api.Resolution(width=target_width, height=target_height),
frameRate=target_frame_rate,
audioCodec="AAC",
audioTransfer="Copy",
dynamicCompressionLevel=dynamic_compression_level,
),
),
wait_label="Creating task",
final_label_on_success="Task created",
)
upload_res = await sync_op(
cls,
ApiEndpoint(
path=f"/proxy/topaz/video/{initial_res.requestId}/accept",
method="PATCH",
),
response_model=topaz_api.VideoAcceptResponse,
wait_label="Preparing upload",
final_label_on_success="Upload started",
)
if len(upload_res.urls) > 1:
raise NotImplementedError(
"Large files are not currently supported. Please open an issue in the ComfyUI repository."
)
async with aiohttp.ClientSession(headers={"Content-Type": "video/mp4"}) as session:
if isinstance(src_video_stream, BytesIO):
src_video_stream.seek(0)
async with session.put(upload_res.urls[0], data=src_video_stream, raise_for_status=True) as res:
upload_etag = res.headers["Etag"]
else:
with builtins.open(src_video_stream, "rb") as video_file:
async with session.put(upload_res.urls[0], data=video_file, raise_for_status=True) as res:
upload_etag = res.headers["Etag"]
await sync_op(
cls,
ApiEndpoint(
path=f"/proxy/topaz/video/{initial_res.requestId}/complete-upload",
method="PATCH",
),
response_model=topaz_api.VideoCompleteUploadResponse,
data=topaz_api.VideoCompleteUploadRequest(
uploadResults=[
topaz_api.VideoCompleteUploadRequestPart(
partNum=1,
eTag=upload_etag,
),
],
),
wait_label="Finalizing upload",
final_label_on_success="Upload completed",
)
final_response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/topaz/video/{initial_res.requestId}/status"),
response_model=topaz_api.VideoStatusResponse,
status_extractor=lambda x: x.status,
progress_extractor=lambda x: getattr(x, "progress", 0),
price_extractor=lambda x: (x.estimates.cost[0] * 0.08 if x.estimates and x.estimates.cost[0] else None),
poll_interval=10.0,
max_poll_attempts=320,
)
return IO.NodeOutput(await download_url_to_video_output(final_response.download.url))
class TopazExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
TopazImageEnhance,
TopazVideoEnhance,
]
async def comfy_entrypoint() -> TopazExtension:
return TopazExtension()

View File

@ -77,9 +77,9 @@ class _PollUIState:
_RETRY_STATUS = {408, 429, 500, 502, 503, 504}
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done"]
FAILED_STATUSES = ["cancelled", "canceled", "fail", "failed", "error"]
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted"]
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done", "complete"]
FAILED_STATUSES = ["cancelled", "canceled", "canceling", "fail", "failed", "error"]
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted", "initializing"]
async def sync_op(
@ -424,7 +424,8 @@ def _display_text(
if status:
display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}")
if price is not None:
display_lines.append(f"Price: ${float(price):,.4f}")
p = f"{float(price):,.4f}".rstrip("0").rstrip(".")
display_lines.append(f"Price: ${p}")
if text is not None:
display_lines.append(text)
if display_lines:

View File

@ -2359,6 +2359,7 @@ async def init_builtin_api_nodes():
"nodes_pika.py",
"nodes_runway.py",
"nodes_sora.py",
"nodes_topaz.py",
"nodes_tripo.py",
"nodes_moonvalley.py",
"nodes_rodin.py",