mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-08 21:44:33 +08:00
feat(api-nodes): add Topaz API nodes (#10755)
This commit is contained in:
parent
7601e89255
commit
394348f5ca
133
comfy_api_nodes/apis/topaz_api.py
Normal file
133
comfy_api_nodes/apis/topaz_api.py
Normal file
@ -0,0 +1,133 @@
|
||||
from typing import Optional, Union
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class ImageEnhanceRequest(BaseModel):
|
||||
model: str = Field("Reimagine")
|
||||
output_format: str = Field("jpeg")
|
||||
subject_detection: str = Field("All")
|
||||
face_enhancement: bool = Field(True)
|
||||
face_enhancement_creativity: float = Field(0, description="Is ignored if face_enhancement is false")
|
||||
face_enhancement_strength: float = Field(0.8, description="Is ignored if face_enhancement is false")
|
||||
source_url: str = Field(...)
|
||||
output_width: Optional[int] = Field(None)
|
||||
output_height: Optional[int] = Field(None)
|
||||
crop_to_fill: bool = Field(False)
|
||||
prompt: Optional[str] = Field(None, description="Text prompt for creative upscaling guidance")
|
||||
creativity: int = Field(3, description="Creativity settings range from 1 to 9")
|
||||
face_preservation: str = Field("true", description="To preserve the identity of characters")
|
||||
color_preservation: str = Field("true", description="To preserve the original color")
|
||||
|
||||
|
||||
class ImageAsyncTaskResponse(BaseModel):
|
||||
process_id: str = Field(...)
|
||||
|
||||
|
||||
class ImageStatusResponse(BaseModel):
|
||||
process_id: str = Field(...)
|
||||
status: str = Field(...)
|
||||
progress: Optional[int] = Field(None)
|
||||
credits: int = Field(...)
|
||||
|
||||
|
||||
class ImageDownloadResponse(BaseModel):
|
||||
download_url: str = Field(...)
|
||||
expiry: int = Field(...)
|
||||
|
||||
|
||||
class Resolution(BaseModel):
|
||||
width: int = Field(...)
|
||||
height: int = Field(...)
|
||||
|
||||
|
||||
class CreateCreateVideoRequestSource(BaseModel):
|
||||
container: str = Field(...)
|
||||
size: int = Field(..., description="Size of the video file in bytes")
|
||||
duration: int = Field(..., description="Duration of the video file in seconds")
|
||||
frameCount: int = Field(..., description="Total number of frames in the video")
|
||||
frameRate: int = Field(...)
|
||||
resolution: Resolution = Field(...)
|
||||
|
||||
|
||||
class VideoFrameInterpolationFilter(BaseModel):
|
||||
model: str = Field(...)
|
||||
slowmo: Optional[int] = Field(None)
|
||||
fps: int = Field(...)
|
||||
duplicate: bool = Field(...)
|
||||
duplicate_threshold: float = Field(...)
|
||||
|
||||
|
||||
class VideoEnhancementFilter(BaseModel):
|
||||
model: str = Field(...)
|
||||
auto: Optional[str] = Field(None, description="Auto, Manual, Relative")
|
||||
focusFixLevel: Optional[str] = Field(None, description="Downscales video input for correction of blurred subjects")
|
||||
compression: Optional[float] = Field(None, description="Strength of compression recovery")
|
||||
details: Optional[float] = Field(None, description="Amount of detail reconstruction")
|
||||
prenoise: Optional[float] = Field(None, description="Amount of noise to add to input to reduce over-smoothing")
|
||||
noise: Optional[float] = Field(None, description="Amount of noise reduction")
|
||||
halo: Optional[float] = Field(None, description="Amount of halo reduction")
|
||||
preblur: Optional[float] = Field(None, description="Anti-aliasing and deblurring strength")
|
||||
blur: Optional[float] = Field(None, description="Amount of sharpness applied")
|
||||
grain: Optional[float] = Field(None, description="Grain after AI model processing")
|
||||
grainSize: Optional[float] = Field(None, description="Size of generated grain")
|
||||
recoverOriginalDetailValue: Optional[float] = Field(None, description="Source details into the output video")
|
||||
creativity: Optional[str] = Field(None, description="Creativity level(high, low) for slc-1 only")
|
||||
isOptimizedMode: Optional[bool] = Field(None, description="Set to true for Starlight Creative (slc-1) only")
|
||||
|
||||
|
||||
class OutputInformationVideo(BaseModel):
|
||||
resolution: Resolution = Field(...)
|
||||
frameRate: int = Field(...)
|
||||
audioCodec: Optional[str] = Field(..., description="Required if audioTransfer is Copy or Convert")
|
||||
audioTransfer: str = Field(..., description="Copy, Convert, None")
|
||||
dynamicCompressionLevel: str = Field(..., description="Low, Mid, High")
|
||||
|
||||
|
||||
class Overrides(BaseModel):
|
||||
isPaidDiffusion: bool = Field(True)
|
||||
|
||||
|
||||
class CreateVideoRequest(BaseModel):
|
||||
source: CreateCreateVideoRequestSource = Field(...)
|
||||
filters: list[Union[VideoFrameInterpolationFilter, VideoEnhancementFilter]] = Field(...)
|
||||
output: OutputInformationVideo = Field(...)
|
||||
overrides: Overrides = Field(Overrides(isPaidDiffusion=True))
|
||||
|
||||
|
||||
class CreateVideoResponse(BaseModel):
|
||||
requestId: str = Field(...)
|
||||
|
||||
|
||||
class VideoAcceptResponse(BaseModel):
|
||||
uploadId: str = Field(...)
|
||||
urls: list[str] = Field(...)
|
||||
|
||||
|
||||
class VideoCompleteUploadRequestPart(BaseModel):
|
||||
partNum: int = Field(...)
|
||||
eTag: str = Field(...)
|
||||
|
||||
|
||||
class VideoCompleteUploadRequest(BaseModel):
|
||||
uploadResults: list[VideoCompleteUploadRequestPart] = Field(...)
|
||||
|
||||
|
||||
class VideoCompleteUploadResponse(BaseModel):
|
||||
message: str = Field(..., description="Confirmation message")
|
||||
|
||||
|
||||
class VideoStatusResponseEstimates(BaseModel):
|
||||
cost: list[int] = Field(...)
|
||||
|
||||
|
||||
class VideoStatusResponseDownloadUrl(BaseModel):
|
||||
url: str = Field(...)
|
||||
|
||||
|
||||
class VideoStatusResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
estimates: Optional[VideoStatusResponseEstimates] = Field(None)
|
||||
progress: Optional[float] = Field(None)
|
||||
message: Optional[str] = Field("")
|
||||
download: Optional[VideoStatusResponseDownloadUrl] = Field(None)
|
||||
421
comfy_api_nodes/nodes_topaz.py
Normal file
421
comfy_api_nodes/nodes_topaz.py
Normal file
@ -0,0 +1,421 @@
|
||||
import builtins
|
||||
from io import BytesIO
|
||||
|
||||
import aiohttp
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.input.video_types import VideoInput
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.apis import topaz_api
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_image_tensor,
|
||||
download_url_to_video_output,
|
||||
get_fs_object_size,
|
||||
get_number_of_images,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
validate_container_format_is_mp4,
|
||||
)
|
||||
|
||||
UPSCALER_MODELS_MAP = {
|
||||
"Starlight (Astra) Fast": "slf-1",
|
||||
"Starlight (Astra) Creative": "slc-1",
|
||||
}
|
||||
UPSCALER_VALUES_MAP = {
|
||||
"FullHD (1080p)": 1920,
|
||||
"4K (2160p)": 3840,
|
||||
}
|
||||
|
||||
|
||||
class TopazImageEnhance(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="TopazImageEnhance",
|
||||
display_name="Topaz Image Enhance",
|
||||
category="api node/image/Topaz",
|
||||
description="Industry-standard upscaling and image enhancement.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["Reimagine"]),
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Optional text prompt for creative upscaling guidance.",
|
||||
optional=True,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"subject_detection",
|
||||
options=["All", "Foreground", "Background"],
|
||||
optional=True,
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"face_enhancement",
|
||||
default=True,
|
||||
optional=True,
|
||||
tooltip="Enhance faces (if present) during processing.",
|
||||
),
|
||||
IO.Float.Input(
|
||||
"face_enhancement_creativity",
|
||||
default=0.0,
|
||||
min=0.0,
|
||||
max=1.0,
|
||||
step=0.01,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
tooltip="Set the creativity level for face enhancement.",
|
||||
),
|
||||
IO.Float.Input(
|
||||
"face_enhancement_strength",
|
||||
default=1.0,
|
||||
min=0.0,
|
||||
max=1.0,
|
||||
step=0.01,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
tooltip="Controls how sharp enhanced faces are relative to the background.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"crop_to_fill",
|
||||
default=False,
|
||||
optional=True,
|
||||
tooltip="By default, the image is letterboxed when the output aspect ratio differs. "
|
||||
"Enable to crop the image to fill the output dimensions.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"output_width",
|
||||
default=0,
|
||||
min=0,
|
||||
max=32000,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
tooltip="Zero value means to calculate automatically (usually it will be original size or output_height if specified).",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"output_height",
|
||||
default=0,
|
||||
min=0,
|
||||
max=32000,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
optional=True,
|
||||
tooltip="Zero value means to output in the same height as original or output width.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"creativity",
|
||||
default=3,
|
||||
min=1,
|
||||
max=9,
|
||||
step=1,
|
||||
display_mode=IO.NumberDisplay.slider,
|
||||
optional=True,
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"face_preservation",
|
||||
default=True,
|
||||
optional=True,
|
||||
tooltip="Preserve subjects' facial identity.",
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"color_preservation",
|
||||
default=True,
|
||||
optional=True,
|
||||
tooltip="Preserve the original colors.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
image: torch.Tensor,
|
||||
prompt: str = "",
|
||||
subject_detection: str = "All",
|
||||
face_enhancement: bool = True,
|
||||
face_enhancement_creativity: float = 1.0,
|
||||
face_enhancement_strength: float = 0.8,
|
||||
crop_to_fill: bool = False,
|
||||
output_width: int = 0,
|
||||
output_height: int = 0,
|
||||
creativity: int = 3,
|
||||
face_preservation: bool = True,
|
||||
color_preservation: bool = True,
|
||||
) -> IO.NodeOutput:
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Only one input image is supported.")
|
||||
download_url = await upload_images_to_comfyapi(cls, image, max_images=1, mime_type="image/png")
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/topaz/image/v1/enhance-gen/async", method="POST"),
|
||||
response_model=topaz_api.ImageAsyncTaskResponse,
|
||||
data=topaz_api.ImageEnhanceRequest(
|
||||
model=model,
|
||||
prompt=prompt,
|
||||
subject_detection=subject_detection,
|
||||
face_enhancement=face_enhancement,
|
||||
face_enhancement_creativity=face_enhancement_creativity,
|
||||
face_enhancement_strength=face_enhancement_strength,
|
||||
crop_to_fill=crop_to_fill,
|
||||
output_width=output_width if output_width else None,
|
||||
output_height=output_height if output_height else None,
|
||||
creativity=creativity,
|
||||
face_preservation=str(face_preservation).lower(),
|
||||
color_preservation=str(color_preservation).lower(),
|
||||
source_url=download_url[0],
|
||||
output_format="png",
|
||||
),
|
||||
content_type="multipart/form-data",
|
||||
)
|
||||
|
||||
await poll_op(
|
||||
cls,
|
||||
poll_endpoint=ApiEndpoint(path=f"/proxy/topaz/image/v1/status/{initial_response.process_id}"),
|
||||
response_model=topaz_api.ImageStatusResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
progress_extractor=lambda x: getattr(x, "progress", 0),
|
||||
price_extractor=lambda x: x.credits * 0.08,
|
||||
poll_interval=8.0,
|
||||
max_poll_attempts=160,
|
||||
estimated_duration=60,
|
||||
)
|
||||
|
||||
results = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/topaz/image/v1/download/{initial_response.process_id}"),
|
||||
response_model=topaz_api.ImageDownloadResponse,
|
||||
monitor_progress=False,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(results.download_url))
|
||||
|
||||
|
||||
class TopazVideoEnhance(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="TopazVideoEnhance",
|
||||
display_name="Topaz Video Enhance",
|
||||
category="api node/video/Topaz",
|
||||
description="Breathe new life into video with powerful upscaling and recovery technology.",
|
||||
inputs=[
|
||||
IO.Video.Input("video"),
|
||||
IO.Boolean.Input("upscaler_enabled", default=True),
|
||||
IO.Combo.Input("upscaler_model", options=list(UPSCALER_MODELS_MAP.keys())),
|
||||
IO.Combo.Input("upscaler_resolution", options=list(UPSCALER_VALUES_MAP.keys())),
|
||||
IO.Combo.Input(
|
||||
"upscaler_creativity",
|
||||
options=["low", "middle", "high"],
|
||||
default="low",
|
||||
tooltip="Creativity level (applies only to Starlight (Astra) Creative).",
|
||||
optional=True,
|
||||
),
|
||||
IO.Boolean.Input("interpolation_enabled", default=False, optional=True),
|
||||
IO.Combo.Input("interpolation_model", options=["apo-8"], default="apo-8", optional=True),
|
||||
IO.Int.Input(
|
||||
"interpolation_slowmo",
|
||||
default=1,
|
||||
min=1,
|
||||
max=16,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Slow-motion factor applied to the input video. "
|
||||
"For example, 2 makes the output twice as slow and doubles the duration.",
|
||||
optional=True,
|
||||
),
|
||||
IO.Int.Input(
|
||||
"interpolation_frame_rate",
|
||||
default=60,
|
||||
min=15,
|
||||
max=240,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Output frame rate.",
|
||||
optional=True,
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"interpolation_duplicate",
|
||||
default=False,
|
||||
tooltip="Analyze the input for duplicate frames and remove them.",
|
||||
optional=True,
|
||||
),
|
||||
IO.Float.Input(
|
||||
"interpolation_duplicate_threshold",
|
||||
default=0.01,
|
||||
min=0.001,
|
||||
max=0.1,
|
||||
step=0.001,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
tooltip="Detection sensitivity for duplicate frames.",
|
||||
optional=True,
|
||||
),
|
||||
IO.Combo.Input(
|
||||
"dynamic_compression_level",
|
||||
options=["Low", "Mid", "High"],
|
||||
default="Low",
|
||||
tooltip="CQP level.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Video.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
video: VideoInput,
|
||||
upscaler_enabled: bool,
|
||||
upscaler_model: str,
|
||||
upscaler_resolution: str,
|
||||
upscaler_creativity: str = "low",
|
||||
interpolation_enabled: bool = False,
|
||||
interpolation_model: str = "apo-8",
|
||||
interpolation_slowmo: int = 1,
|
||||
interpolation_frame_rate: int = 60,
|
||||
interpolation_duplicate: bool = False,
|
||||
interpolation_duplicate_threshold: float = 0.01,
|
||||
dynamic_compression_level: str = "Low",
|
||||
) -> IO.NodeOutput:
|
||||
if upscaler_enabled is False and interpolation_enabled is False:
|
||||
raise ValueError("There is nothing to do: both upscaling and interpolation are disabled.")
|
||||
src_width, src_height = video.get_dimensions()
|
||||
video_components = video.get_components()
|
||||
src_frame_rate = int(video_components.frame_rate)
|
||||
duration_sec = video.get_duration()
|
||||
estimated_frames = int(duration_sec * src_frame_rate)
|
||||
validate_container_format_is_mp4(video)
|
||||
src_video_stream = video.get_stream_source()
|
||||
target_width = src_width
|
||||
target_height = src_height
|
||||
target_frame_rate = src_frame_rate
|
||||
filters = []
|
||||
if upscaler_enabled:
|
||||
target_width = UPSCALER_VALUES_MAP[upscaler_resolution]
|
||||
target_height = UPSCALER_VALUES_MAP[upscaler_resolution]
|
||||
filters.append(
|
||||
topaz_api.VideoEnhancementFilter(
|
||||
model=UPSCALER_MODELS_MAP[upscaler_model],
|
||||
creativity=(upscaler_creativity if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None),
|
||||
isOptimizedMode=(True if UPSCALER_MODELS_MAP[upscaler_model] == "slc-1" else None),
|
||||
),
|
||||
)
|
||||
if interpolation_enabled:
|
||||
target_frame_rate = interpolation_frame_rate
|
||||
filters.append(
|
||||
topaz_api.VideoFrameInterpolationFilter(
|
||||
model=interpolation_model,
|
||||
slowmo=interpolation_slowmo,
|
||||
fps=interpolation_frame_rate,
|
||||
duplicate=interpolation_duplicate,
|
||||
duplicate_threshold=interpolation_duplicate_threshold,
|
||||
),
|
||||
)
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/topaz/video/", method="POST"),
|
||||
response_model=topaz_api.CreateVideoResponse,
|
||||
data=topaz_api.CreateVideoRequest(
|
||||
source=topaz_api.CreateCreateVideoRequestSource(
|
||||
container="mp4",
|
||||
size=get_fs_object_size(src_video_stream),
|
||||
duration=int(duration_sec),
|
||||
frameCount=estimated_frames,
|
||||
frameRate=src_frame_rate,
|
||||
resolution=topaz_api.Resolution(width=src_width, height=src_height),
|
||||
),
|
||||
filters=filters,
|
||||
output=topaz_api.OutputInformationVideo(
|
||||
resolution=topaz_api.Resolution(width=target_width, height=target_height),
|
||||
frameRate=target_frame_rate,
|
||||
audioCodec="AAC",
|
||||
audioTransfer="Copy",
|
||||
dynamicCompressionLevel=dynamic_compression_level,
|
||||
),
|
||||
),
|
||||
wait_label="Creating task",
|
||||
final_label_on_success="Task created",
|
||||
)
|
||||
upload_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(
|
||||
path=f"/proxy/topaz/video/{initial_res.requestId}/accept",
|
||||
method="PATCH",
|
||||
),
|
||||
response_model=topaz_api.VideoAcceptResponse,
|
||||
wait_label="Preparing upload",
|
||||
final_label_on_success="Upload started",
|
||||
)
|
||||
if len(upload_res.urls) > 1:
|
||||
raise NotImplementedError(
|
||||
"Large files are not currently supported. Please open an issue in the ComfyUI repository."
|
||||
)
|
||||
async with aiohttp.ClientSession(headers={"Content-Type": "video/mp4"}) as session:
|
||||
if isinstance(src_video_stream, BytesIO):
|
||||
src_video_stream.seek(0)
|
||||
async with session.put(upload_res.urls[0], data=src_video_stream, raise_for_status=True) as res:
|
||||
upload_etag = res.headers["Etag"]
|
||||
else:
|
||||
with builtins.open(src_video_stream, "rb") as video_file:
|
||||
async with session.put(upload_res.urls[0], data=video_file, raise_for_status=True) as res:
|
||||
upload_etag = res.headers["Etag"]
|
||||
await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(
|
||||
path=f"/proxy/topaz/video/{initial_res.requestId}/complete-upload",
|
||||
method="PATCH",
|
||||
),
|
||||
response_model=topaz_api.VideoCompleteUploadResponse,
|
||||
data=topaz_api.VideoCompleteUploadRequest(
|
||||
uploadResults=[
|
||||
topaz_api.VideoCompleteUploadRequestPart(
|
||||
partNum=1,
|
||||
eTag=upload_etag,
|
||||
),
|
||||
],
|
||||
),
|
||||
wait_label="Finalizing upload",
|
||||
final_label_on_success="Upload completed",
|
||||
)
|
||||
final_response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/topaz/video/{initial_res.requestId}/status"),
|
||||
response_model=topaz_api.VideoStatusResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
progress_extractor=lambda x: getattr(x, "progress", 0),
|
||||
price_extractor=lambda x: (x.estimates.cost[0] * 0.08 if x.estimates and x.estimates.cost[0] else None),
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=320,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(final_response.download.url))
|
||||
|
||||
|
||||
class TopazExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
TopazImageEnhance,
|
||||
TopazVideoEnhance,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> TopazExtension:
|
||||
return TopazExtension()
|
||||
@ -77,9 +77,9 @@ class _PollUIState:
|
||||
|
||||
|
||||
_RETRY_STATUS = {408, 429, 500, 502, 503, 504}
|
||||
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done"]
|
||||
FAILED_STATUSES = ["cancelled", "canceled", "fail", "failed", "error"]
|
||||
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted"]
|
||||
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done", "complete"]
|
||||
FAILED_STATUSES = ["cancelled", "canceled", "canceling", "fail", "failed", "error"]
|
||||
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted", "initializing"]
|
||||
|
||||
|
||||
async def sync_op(
|
||||
@ -424,7 +424,8 @@ def _display_text(
|
||||
if status:
|
||||
display_lines.append(f"Status: {status.capitalize() if isinstance(status, str) else status}")
|
||||
if price is not None:
|
||||
display_lines.append(f"Price: ${float(price):,.4f}")
|
||||
p = f"{float(price):,.4f}".rstrip("0").rstrip(".")
|
||||
display_lines.append(f"Price: ${p}")
|
||||
if text is not None:
|
||||
display_lines.append(text)
|
||||
if display_lines:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user