mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-08 21:44:33 +08:00
Prs/lora reservations (reduce massive Lora reservations especially on Flux2) (#11069)
* mp: only count the offload cost of math once This was previously bundling the combined weight storage and computation cost * ops: put all post async transfer compute on the main stream Some models have massive weights that need either complex dequantization or lora patching. Don't do these patchings on the offload stream, instead do them on the main stream to syncrhonize the potentially large vram spikes for these compute processes. This avoids having to assume a worst case scenario of multiple offload streams all spiking VRAM is parallel with whatever the main stream is doing.
This commit is contained in:
parent
861817d22d
commit
519c941165
@ -704,7 +704,7 @@ class ModelPatcher:
|
||||
|
||||
lowvram_weight = False
|
||||
|
||||
potential_offload = max(offload_buffer, module_offload_mem * (comfy.model_management.NUM_STREAMS + 1))
|
||||
potential_offload = max(offload_buffer, module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem))
|
||||
lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory
|
||||
|
||||
weight_key = "{}.weight".format(n)
|
||||
@ -883,7 +883,7 @@ class ModelPatcher:
|
||||
break
|
||||
module_offload_mem, module_mem, n, m, params = unload
|
||||
|
||||
potential_offload = (comfy.model_management.NUM_STREAMS + 1) * module_offload_mem
|
||||
potential_offload = module_offload_mem + (comfy.model_management.NUM_STREAMS * module_mem)
|
||||
|
||||
lowvram_possible = hasattr(m, "comfy_cast_weights")
|
||||
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
|
||||
|
||||
39
comfy/ops.py
39
comfy/ops.py
@ -111,22 +111,24 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
|
||||
if s.bias is not None:
|
||||
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
|
||||
|
||||
if bias_has_function:
|
||||
with wf_context:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
|
||||
bias_a = bias
|
||||
weight_a = weight
|
||||
|
||||
if s.bias is not None:
|
||||
for f in s.bias_function:
|
||||
bias = f(bias)
|
||||
|
||||
if weight_has_function or weight.dtype != dtype:
|
||||
with wf_context:
|
||||
weight = weight.to(dtype=dtype)
|
||||
if isinstance(weight, QuantizedTensor):
|
||||
weight = weight.dequantize()
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
weight = weight.to(dtype=dtype)
|
||||
if isinstance(weight, QuantizedTensor):
|
||||
weight = weight.dequantize()
|
||||
for f in s.weight_function:
|
||||
weight = f(weight)
|
||||
|
||||
comfy.model_management.sync_stream(device, offload_stream)
|
||||
if offloadable:
|
||||
return weight, bias, offload_stream
|
||||
return weight, bias, (offload_stream, weight_a, bias_a)
|
||||
else:
|
||||
#Legacy function signature
|
||||
return weight, bias
|
||||
@ -135,13 +137,16 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
|
||||
def uncast_bias_weight(s, weight, bias, offload_stream):
|
||||
if offload_stream is None:
|
||||
return
|
||||
if weight is not None:
|
||||
device = weight.device
|
||||
os, weight_a, bias_a = offload_stream
|
||||
if os is None:
|
||||
return
|
||||
if weight_a is not None:
|
||||
device = weight_a.device
|
||||
else:
|
||||
if bias is None:
|
||||
if bias_a is None:
|
||||
return
|
||||
device = bias.device
|
||||
offload_stream.wait_stream(comfy.model_management.current_stream(device))
|
||||
device = bias_a.device
|
||||
os.wait_stream(comfy.model_management.current_stream(device))
|
||||
|
||||
|
||||
class CastWeightBiasOp:
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user