Support some z image lora formats. (#10978)

This commit is contained in:
comfyanonymous 2025-11-28 18:12:42 -08:00 committed by GitHub
parent b907085709
commit 52a32e2b32
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 53 additions and 0 deletions

View File

@ -313,6 +313,14 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(key_lora)] = k
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
if isinstance(model, comfy.model_base.Lumina2):
diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
for k in diffusers_keys:
to = diffusers_keys[k]
key_lora = k[:-len(".weight")]
key_map["diffusion_model.{}".format(key_lora)] = to
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to
return key_map

View File

@ -675,6 +675,51 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
return key_map
def z_image_to_diffusers(mmdit_config, output_prefix=""):
n_layers = mmdit_config.get("n_layers", 0)
hidden_size = mmdit_config.get("dim", 0)
key_map = {}
for index in range(n_layers):
prefix_from = "layers.{}".format(index)
prefix_to = "{}layers.{}".format(output_prefix, index)
for end in ("weight", "bias"):
k = "{}.attention.".format(prefix_from)
qkv = "{}.attention.qkv.{}".format(prefix_to, end)
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
block_map = {
"attention.norm_q.weight": "attention.q_norm.weight",
"attention.norm_k.weight": "attention.k_norm.weight",
"attention.to_out.0.weight": "attention.out.weight",
"attention.to_out.0.bias": "attention.out.bias",
}
for k in block_map:
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])
MAP_BASIC = {
# Final layer
("final_layer.linear.weight", "all_final_layer.2-1.linear.weight"),
("final_layer.linear.bias", "all_final_layer.2-1.linear.bias"),
("final_layer.adaLN_modulation.1.weight", "all_final_layer.2-1.adaLN_modulation.1.weight"),
("final_layer.adaLN_modulation.1.bias", "all_final_layer.2-1.adaLN_modulation.1.bias"),
# X embedder
("x_embedder.weight", "all_x_embedder.2-1.weight"),
("x_embedder.bias", "all_x_embedder.2-1.bias"),
}
for k in MAP_BASIC:
key_map[k[1]] = "{}{}".format(output_prefix, k[0])
return key_map
def repeat_to_batch_size(tensor, batch_size, dim=0):
if tensor.shape[dim] > batch_size:
return tensor.narrow(dim, 0, batch_size)