mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-08 21:44:33 +08:00
convert hunyuan3d.py to V3 schema (#10664)
This commit is contained in:
parent
65ee24c978
commit
6a1d3a1ae1
@ -7,7 +7,7 @@ from comfy_api.internal.singleton import ProxiedSingleton
|
||||
from comfy_api.internal.async_to_sync import create_sync_class
|
||||
from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
|
||||
from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents
|
||||
from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents
|
||||
from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
|
||||
from . import _io as io
|
||||
from . import _ui as ui
|
||||
# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401
|
||||
@ -104,6 +104,8 @@ class Types:
|
||||
VideoCodec = VideoCodec
|
||||
VideoContainer = VideoContainer
|
||||
VideoComponents = VideoComponents
|
||||
MESH = MESH
|
||||
VOXEL = VOXEL
|
||||
|
||||
ComfyAPI = ComfyAPI_latest
|
||||
|
||||
|
||||
@ -27,6 +27,7 @@ from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classpr
|
||||
prune_dict, shallow_clone_class)
|
||||
from comfy_api.latest._resources import Resources, ResourcesLocal
|
||||
from comfy_execution.graph_utils import ExecutionBlocker
|
||||
from ._util import MESH, VOXEL
|
||||
|
||||
# from comfy_extras.nodes_images import SVG as SVG_ # NOTE: needs to be moved before can be imported due to circular reference
|
||||
|
||||
@ -656,11 +657,11 @@ class LossMap(ComfyTypeIO):
|
||||
|
||||
@comfytype(io_type="VOXEL")
|
||||
class Voxel(ComfyTypeIO):
|
||||
Type = Any # TODO: VOXEL class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3
|
||||
Type = VOXEL
|
||||
|
||||
@comfytype(io_type="MESH")
|
||||
class Mesh(ComfyTypeIO):
|
||||
Type = Any # TODO: MESH class is defined in comfy_extras/nodes_hunyuan3d.py; should be moved to somewhere else before referenced directly in v3
|
||||
Type = MESH
|
||||
|
||||
@comfytype(io_type="HOOKS")
|
||||
class Hooks(ComfyTypeIO):
|
||||
|
||||
@ -1,8 +1,11 @@
|
||||
from .video_types import VideoContainer, VideoCodec, VideoComponents
|
||||
from .geometry_types import VOXEL, MESH
|
||||
|
||||
__all__ = [
|
||||
# Utility Types
|
||||
"VideoContainer",
|
||||
"VideoCodec",
|
||||
"VideoComponents",
|
||||
"VOXEL",
|
||||
"MESH",
|
||||
]
|
||||
|
||||
12
comfy_api/latest/_util/geometry_types.py
Normal file
12
comfy_api/latest/_util/geometry_types.py
Normal file
@ -0,0 +1,12 @@
|
||||
import torch
|
||||
|
||||
|
||||
class VOXEL:
|
||||
def __init__(self, data: torch.Tensor):
|
||||
self.data = data
|
||||
|
||||
|
||||
class MESH:
|
||||
def __init__(self, vertices: torch.Tensor, faces: torch.Tensor):
|
||||
self.vertices = vertices
|
||||
self.faces = faces
|
||||
@ -7,63 +7,79 @@ from comfy.ldm.modules.diffusionmodules.mmdit import get_1d_sincos_pos_embed_fro
|
||||
import folder_paths
|
||||
import comfy.model_management
|
||||
from comfy.cli_args import args
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, IO, Types
|
||||
from comfy_api.latest._util import MESH, VOXEL # only for backward compatibility if someone import it from this file (will be removed later) # noqa
|
||||
|
||||
class EmptyLatentHunyuan3Dv2:
|
||||
|
||||
class EmptyLatentHunyuan3Dv2(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"resolution": ("INT", {"default": 3072, "min": 1, "max": 8192}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="EmptyLatentHunyuan3Dv2",
|
||||
category="latent/3d",
|
||||
inputs=[
|
||||
IO.Int.Input("resolution", default=3072, min=1, max=8192),
|
||||
IO.Int.Input("batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."),
|
||||
],
|
||||
outputs=[
|
||||
IO.Latent.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "generate"
|
||||
|
||||
CATEGORY = "latent/3d"
|
||||
|
||||
def generate(self, resolution, batch_size):
|
||||
@classmethod
|
||||
def execute(cls, resolution, batch_size) -> IO.NodeOutput:
|
||||
latent = torch.zeros([batch_size, 64, resolution], device=comfy.model_management.intermediate_device())
|
||||
return ({"samples": latent, "type": "hunyuan3dv2"}, )
|
||||
return IO.NodeOutput({"samples": latent, "type": "hunyuan3dv2"})
|
||||
|
||||
class Hunyuan3Dv2Conditioning:
|
||||
generate = execute # TODO: remove
|
||||
|
||||
|
||||
class Hunyuan3Dv2Conditioning(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"clip_vision_output": ("CLIP_VISION_OUTPUT",),
|
||||
}}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="Hunyuan3Dv2Conditioning",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
IO.ClipVisionOutput.Input("clip_vision_output"),
|
||||
],
|
||||
outputs=[
|
||||
IO.Conditioning.Output(display_name="positive"),
|
||||
IO.Conditioning.Output(display_name="negative"),
|
||||
]
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
|
||||
RETURN_NAMES = ("positive", "negative")
|
||||
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/video_models"
|
||||
|
||||
def encode(self, clip_vision_output):
|
||||
@classmethod
|
||||
def execute(cls, clip_vision_output) -> IO.NodeOutput:
|
||||
embeds = clip_vision_output.last_hidden_state
|
||||
positive = [[embeds, {}]]
|
||||
negative = [[torch.zeros_like(embeds), {}]]
|
||||
return (positive, negative)
|
||||
return IO.NodeOutput(positive, negative)
|
||||
|
||||
encode = execute # TODO: remove
|
||||
|
||||
|
||||
class Hunyuan3Dv2ConditioningMultiView:
|
||||
class Hunyuan3Dv2ConditioningMultiView(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {},
|
||||
"optional": {"front": ("CLIP_VISION_OUTPUT",),
|
||||
"left": ("CLIP_VISION_OUTPUT",),
|
||||
"back": ("CLIP_VISION_OUTPUT",),
|
||||
"right": ("CLIP_VISION_OUTPUT",), }}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="Hunyuan3Dv2ConditioningMultiView",
|
||||
category="conditioning/video_models",
|
||||
inputs=[
|
||||
IO.ClipVisionOutput.Input("front", optional=True),
|
||||
IO.ClipVisionOutput.Input("left", optional=True),
|
||||
IO.ClipVisionOutput.Input("back", optional=True),
|
||||
IO.ClipVisionOutput.Input("right", optional=True),
|
||||
],
|
||||
outputs=[
|
||||
IO.Conditioning.Output(display_name="positive"),
|
||||
IO.Conditioning.Output(display_name="negative"),
|
||||
]
|
||||
)
|
||||
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
|
||||
RETURN_NAMES = ("positive", "negative")
|
||||
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "conditioning/video_models"
|
||||
|
||||
def encode(self, front=None, left=None, back=None, right=None):
|
||||
@classmethod
|
||||
def execute(cls, front=None, left=None, back=None, right=None) -> IO.NodeOutput:
|
||||
all_embeds = [front, left, back, right]
|
||||
out = []
|
||||
pos_embeds = None
|
||||
@ -76,29 +92,35 @@ class Hunyuan3Dv2ConditioningMultiView:
|
||||
embeds = torch.cat(out, dim=1)
|
||||
positive = [[embeds, {}]]
|
||||
negative = [[torch.zeros_like(embeds), {}]]
|
||||
return (positive, negative)
|
||||
return IO.NodeOutput(positive, negative)
|
||||
|
||||
encode = execute # TODO: remove
|
||||
|
||||
|
||||
class VOXEL:
|
||||
def __init__(self, data):
|
||||
self.data = data
|
||||
|
||||
class VAEDecodeHunyuan3D:
|
||||
class VAEDecodeHunyuan3D(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"samples": ("LATENT", ),
|
||||
"vae": ("VAE", ),
|
||||
"num_chunks": ("INT", {"default": 8000, "min": 1000, "max": 500000}),
|
||||
"octree_resolution": ("INT", {"default": 256, "min": 16, "max": 512}),
|
||||
}}
|
||||
RETURN_TYPES = ("VOXEL",)
|
||||
FUNCTION = "decode"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="VAEDecodeHunyuan3D",
|
||||
category="latent/3d",
|
||||
inputs=[
|
||||
IO.Latent.Input("samples"),
|
||||
IO.Vae.Input("vae"),
|
||||
IO.Int.Input("num_chunks", default=8000, min=1000, max=500000),
|
||||
IO.Int.Input("octree_resolution", default=256, min=16, max=512),
|
||||
],
|
||||
outputs=[
|
||||
IO.Voxel.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
CATEGORY = "latent/3d"
|
||||
@classmethod
|
||||
def execute(cls, vae, samples, num_chunks, octree_resolution) -> IO.NodeOutput:
|
||||
voxels = Types.VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution}))
|
||||
return IO.NodeOutput(voxels)
|
||||
|
||||
decode = execute # TODO: remove
|
||||
|
||||
def decode(self, vae, samples, num_chunks, octree_resolution):
|
||||
voxels = VOXEL(vae.decode(samples["samples"], vae_options={"num_chunks": num_chunks, "octree_resolution": octree_resolution}))
|
||||
return (voxels, )
|
||||
|
||||
def voxel_to_mesh(voxels, threshold=0.5, device=None):
|
||||
if device is None:
|
||||
@ -396,24 +418,24 @@ def voxel_to_mesh_surfnet(voxels, threshold=0.5, device=None):
|
||||
|
||||
return final_vertices, faces
|
||||
|
||||
class MESH:
|
||||
def __init__(self, vertices, faces):
|
||||
self.vertices = vertices
|
||||
self.faces = faces
|
||||
|
||||
|
||||
class VoxelToMeshBasic:
|
||||
class VoxelToMeshBasic(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"voxel": ("VOXEL", ),
|
||||
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MESH",)
|
||||
FUNCTION = "decode"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="VoxelToMeshBasic",
|
||||
category="3d",
|
||||
inputs=[
|
||||
IO.Voxel.Input("voxel"),
|
||||
IO.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
IO.Mesh.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
CATEGORY = "3d"
|
||||
|
||||
def decode(self, voxel, threshold):
|
||||
@classmethod
|
||||
def execute(cls, voxel, threshold) -> IO.NodeOutput:
|
||||
vertices = []
|
||||
faces = []
|
||||
for x in voxel.data:
|
||||
@ -421,21 +443,29 @@ class VoxelToMeshBasic:
|
||||
vertices.append(v)
|
||||
faces.append(f)
|
||||
|
||||
return (MESH(torch.stack(vertices), torch.stack(faces)), )
|
||||
return IO.NodeOutput(Types.MESH(torch.stack(vertices), torch.stack(faces)))
|
||||
|
||||
class VoxelToMesh:
|
||||
decode = execute # TODO: remove
|
||||
|
||||
|
||||
class VoxelToMesh(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"voxel": ("VOXEL", ),
|
||||
"algorithm": (["surface net", "basic"], ),
|
||||
"threshold": ("FLOAT", {"default": 0.6, "min": -1.0, "max": 1.0, "step": 0.01}),
|
||||
}}
|
||||
RETURN_TYPES = ("MESH",)
|
||||
FUNCTION = "decode"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="VoxelToMesh",
|
||||
category="3d",
|
||||
inputs=[
|
||||
IO.Voxel.Input("voxel"),
|
||||
IO.Combo.Input("algorithm", options=["surface net", "basic"]),
|
||||
IO.Float.Input("threshold", default=0.6, min=-1.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[
|
||||
IO.Mesh.Output(),
|
||||
]
|
||||
)
|
||||
|
||||
CATEGORY = "3d"
|
||||
|
||||
def decode(self, voxel, algorithm, threshold):
|
||||
@classmethod
|
||||
def execute(cls, voxel, algorithm, threshold) -> IO.NodeOutput:
|
||||
vertices = []
|
||||
faces = []
|
||||
|
||||
@ -449,7 +479,9 @@ class VoxelToMesh:
|
||||
vertices.append(v)
|
||||
faces.append(f)
|
||||
|
||||
return (MESH(torch.stack(vertices), torch.stack(faces)), )
|
||||
return IO.NodeOutput(Types.MESH(torch.stack(vertices), torch.stack(faces)))
|
||||
|
||||
decode = execute # TODO: remove
|
||||
|
||||
|
||||
def save_glb(vertices, faces, filepath, metadata=None):
|
||||
@ -581,31 +613,32 @@ def save_glb(vertices, faces, filepath, metadata=None):
|
||||
return filepath
|
||||
|
||||
|
||||
class SaveGLB:
|
||||
class SaveGLB(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {"mesh": ("MESH", ),
|
||||
"filename_prefix": ("STRING", {"default": "mesh/ComfyUI"}), },
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, }
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="SaveGLB",
|
||||
category="3d",
|
||||
is_output_node=True,
|
||||
inputs=[
|
||||
IO.Mesh.Input("mesh"),
|
||||
IO.String.Input("filename_prefix", default="mesh/ComfyUI"),
|
||||
],
|
||||
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo]
|
||||
)
|
||||
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
||||
CATEGORY = "3d"
|
||||
|
||||
def save(self, mesh, filename_prefix, prompt=None, extra_pnginfo=None):
|
||||
@classmethod
|
||||
def execute(cls, mesh, filename_prefix) -> IO.NodeOutput:
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
|
||||
results = []
|
||||
|
||||
metadata = {}
|
||||
if not args.disable_metadata:
|
||||
if prompt is not None:
|
||||
metadata["prompt"] = json.dumps(prompt)
|
||||
if extra_pnginfo is not None:
|
||||
for x in extra_pnginfo:
|
||||
metadata[x] = json.dumps(extra_pnginfo[x])
|
||||
if cls.hidden.prompt is not None:
|
||||
metadata["prompt"] = json.dumps(cls.hidden.prompt)
|
||||
if cls.hidden.extra_pnginfo is not None:
|
||||
for x in cls.hidden.extra_pnginfo:
|
||||
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
||||
|
||||
for i in range(mesh.vertices.shape[0]):
|
||||
f = f"{filename}_{counter:05}_.glb"
|
||||
@ -616,15 +649,22 @@ class SaveGLB:
|
||||
"type": "output"
|
||||
})
|
||||
counter += 1
|
||||
return {"ui": {"3d": results}}
|
||||
return IO.NodeOutput(ui={"3d": results})
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"EmptyLatentHunyuan3Dv2": EmptyLatentHunyuan3Dv2,
|
||||
"Hunyuan3Dv2Conditioning": Hunyuan3Dv2Conditioning,
|
||||
"Hunyuan3Dv2ConditioningMultiView": Hunyuan3Dv2ConditioningMultiView,
|
||||
"VAEDecodeHunyuan3D": VAEDecodeHunyuan3D,
|
||||
"VoxelToMeshBasic": VoxelToMeshBasic,
|
||||
"VoxelToMesh": VoxelToMesh,
|
||||
"SaveGLB": SaveGLB,
|
||||
}
|
||||
class Hunyuan3dExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
EmptyLatentHunyuan3Dv2,
|
||||
Hunyuan3Dv2Conditioning,
|
||||
Hunyuan3Dv2ConditioningMultiView,
|
||||
VAEDecodeHunyuan3D,
|
||||
VoxelToMeshBasic,
|
||||
VoxelToMesh,
|
||||
SaveGLB,
|
||||
]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> Hunyuan3dExtension:
|
||||
return Hunyuan3dExtension()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user