mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-10 22:44:54 +08:00
use new API client in Luma and Minimax nodes (#10528)
This commit is contained in:
parent
e525673f72
commit
6c14f3afac
@ -3,14 +3,6 @@ import aiohttp
|
||||
import mimetypes
|
||||
from typing import Optional, Union
|
||||
from comfy.utils import common_upscale
|
||||
from comfy_api_nodes.apis.client import (
|
||||
ApiClient,
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
UploadRequest,
|
||||
UploadResponse,
|
||||
)
|
||||
from server import PromptServer
|
||||
from comfy.cli_args import args
|
||||
|
||||
@ -19,7 +11,6 @@ from PIL import Image
|
||||
import torch
|
||||
import math
|
||||
import base64
|
||||
from .util import tensor_to_bytesio, bytesio_to_image_tensor
|
||||
from io import BytesIO
|
||||
|
||||
|
||||
@ -148,11 +139,6 @@ async def download_url_to_bytesio(
|
||||
return BytesIO(await resp.read())
|
||||
|
||||
|
||||
def process_image_response(response_content: bytes | str) -> torch.Tensor:
|
||||
"""Uses content from a Response object and converts it to a torch.Tensor"""
|
||||
return bytesio_to_image_tensor(BytesIO(response_content))
|
||||
|
||||
|
||||
def text_filepath_to_base64_string(filepath: str) -> str:
|
||||
"""Converts a text file to a base64 string."""
|
||||
with open(filepath, "rb") as f:
|
||||
@ -169,73 +155,6 @@ def text_filepath_to_data_uri(filepath: str) -> str:
|
||||
return f"data:{mime_type};base64,{base64_string}"
|
||||
|
||||
|
||||
async def upload_file_to_comfyapi(
|
||||
file_bytes_io: BytesIO,
|
||||
filename: str,
|
||||
upload_mime_type: Optional[str],
|
||||
auth_kwargs: Optional[dict[str, str]] = None,
|
||||
) -> str:
|
||||
"""
|
||||
Uploads a single file to ComfyUI API and returns its download URL.
|
||||
|
||||
Args:
|
||||
file_bytes_io: BytesIO object containing the file data.
|
||||
filename: The filename of the file.
|
||||
upload_mime_type: MIME type of the file.
|
||||
auth_kwargs: Optional authentication token(s).
|
||||
|
||||
Returns:
|
||||
The download URL for the uploaded file.
|
||||
"""
|
||||
if upload_mime_type is None:
|
||||
request_object = UploadRequest(file_name=filename)
|
||||
else:
|
||||
request_object = UploadRequest(file_name=filename, content_type=upload_mime_type)
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/customers/storage",
|
||||
method=HttpMethod.POST,
|
||||
request_model=UploadRequest,
|
||||
response_model=UploadResponse,
|
||||
),
|
||||
request=request_object,
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
|
||||
response: UploadResponse = await operation.execute()
|
||||
await ApiClient.upload_file(response.upload_url, file_bytes_io, content_type=upload_mime_type)
|
||||
return response.download_url
|
||||
|
||||
|
||||
async def upload_images_to_comfyapi(
|
||||
image: torch.Tensor,
|
||||
max_images=8,
|
||||
auth_kwargs: Optional[dict[str, str]] = None,
|
||||
mime_type: Optional[str] = None,
|
||||
) -> list[str]:
|
||||
"""
|
||||
Uploads images to ComfyUI API and returns download URLs.
|
||||
To upload multiple images, stack them in the batch dimension first.
|
||||
|
||||
Args:
|
||||
image: Input torch.Tensor image.
|
||||
max_images: Maximum number of images to upload.
|
||||
auth_kwargs: Optional authentication token(s).
|
||||
mime_type: Optional MIME type for the image.
|
||||
"""
|
||||
# if batch, try to upload each file if max_images is greater than 0
|
||||
download_urls: list[str] = []
|
||||
is_batch = len(image.shape) > 3
|
||||
batch_len = image.shape[0] if is_batch else 1
|
||||
|
||||
for idx in range(min(batch_len, max_images)):
|
||||
tensor = image[idx] if is_batch else image
|
||||
img_io = tensor_to_bytesio(tensor, mime_type=mime_type)
|
||||
url = await upload_file_to_comfyapi(img_io, img_io.name, mime_type, auth_kwargs)
|
||||
download_urls.append(url)
|
||||
return download_urls
|
||||
|
||||
|
||||
def resize_mask_to_image(
|
||||
mask: torch.Tensor,
|
||||
image: torch.Tensor,
|
||||
|
||||
120
comfy_api_nodes/apis/minimax_api.py
Normal file
120
comfy_api_nodes/apis/minimax_api.py
Normal file
@ -0,0 +1,120 @@
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class MinimaxBaseResponse(BaseModel):
|
||||
status_code: int = Field(
|
||||
...,
|
||||
description='Status code. 0 indicates success, other values indicate errors.',
|
||||
)
|
||||
status_msg: str = Field(
|
||||
..., description='Specific error details or success message.'
|
||||
)
|
||||
|
||||
|
||||
class File(BaseModel):
|
||||
bytes: Optional[int] = Field(None, description='File size in bytes')
|
||||
created_at: Optional[int] = Field(
|
||||
None, description='Unix timestamp when the file was created, in seconds'
|
||||
)
|
||||
download_url: Optional[str] = Field(
|
||||
None, description='The URL to download the video'
|
||||
)
|
||||
backup_download_url: Optional[str] = Field(
|
||||
None, description='The backup URL to download the video'
|
||||
)
|
||||
|
||||
file_id: Optional[int] = Field(None, description='Unique identifier for the file')
|
||||
filename: Optional[str] = Field(None, description='The name of the file')
|
||||
purpose: Optional[str] = Field(None, description='The purpose of using the file')
|
||||
|
||||
|
||||
class MinimaxFileRetrieveResponse(BaseModel):
|
||||
base_resp: MinimaxBaseResponse
|
||||
file: File
|
||||
|
||||
|
||||
class MiniMaxModel(str, Enum):
|
||||
T2V_01_Director = 'T2V-01-Director'
|
||||
I2V_01_Director = 'I2V-01-Director'
|
||||
S2V_01 = 'S2V-01'
|
||||
I2V_01 = 'I2V-01'
|
||||
I2V_01_live = 'I2V-01-live'
|
||||
T2V_01 = 'T2V-01'
|
||||
Hailuo_02 = 'MiniMax-Hailuo-02'
|
||||
|
||||
|
||||
class Status6(str, Enum):
|
||||
Queueing = 'Queueing'
|
||||
Preparing = 'Preparing'
|
||||
Processing = 'Processing'
|
||||
Success = 'Success'
|
||||
Fail = 'Fail'
|
||||
|
||||
|
||||
class MinimaxTaskResultResponse(BaseModel):
|
||||
base_resp: MinimaxBaseResponse
|
||||
file_id: Optional[str] = Field(
|
||||
None,
|
||||
description='After the task status changes to Success, this field returns the file ID corresponding to the generated video.',
|
||||
)
|
||||
status: Status6 = Field(
|
||||
...,
|
||||
description="Task status: 'Queueing' (in queue), 'Preparing' (task is preparing), 'Processing' (generating), 'Success' (task completed successfully), or 'Fail' (task failed).",
|
||||
)
|
||||
task_id: str = Field(..., description='The task ID being queried.')
|
||||
|
||||
|
||||
class SubjectReferenceItem(BaseModel):
|
||||
image: Optional[str] = Field(
|
||||
None, description='URL or base64 encoding of the subject reference image.'
|
||||
)
|
||||
mask: Optional[str] = Field(
|
||||
None,
|
||||
description='URL or base64 encoding of the mask for the subject reference image.',
|
||||
)
|
||||
|
||||
|
||||
class MinimaxVideoGenerationRequest(BaseModel):
|
||||
callback_url: Optional[str] = Field(
|
||||
None,
|
||||
description='Optional. URL to receive real-time status updates about the video generation task.',
|
||||
)
|
||||
first_frame_image: Optional[str] = Field(
|
||||
None,
|
||||
description='URL or base64 encoding of the first frame image. Required when model is I2V-01, I2V-01-Director, or I2V-01-live.',
|
||||
)
|
||||
model: MiniMaxModel = Field(
|
||||
...,
|
||||
description='Required. ID of model. Options: T2V-01-Director, I2V-01-Director, S2V-01, I2V-01, I2V-01-live, T2V-01',
|
||||
)
|
||||
prompt: Optional[str] = Field(
|
||||
None,
|
||||
description='Description of the video. Should be less than 2000 characters. Supports camera movement instructions in [brackets].',
|
||||
max_length=2000,
|
||||
)
|
||||
prompt_optimizer: Optional[bool] = Field(
|
||||
True,
|
||||
description='If true (default), the model will automatically optimize the prompt. Set to false for more precise control.',
|
||||
)
|
||||
subject_reference: Optional[list[SubjectReferenceItem]] = Field(
|
||||
None,
|
||||
description='Only available when model is S2V-01. The model will generate a video based on the subject uploaded through this parameter.',
|
||||
)
|
||||
duration: Optional[int] = Field(
|
||||
None,
|
||||
description="The length of the output video in seconds."
|
||||
)
|
||||
resolution: Optional[str] = Field(
|
||||
None,
|
||||
description="The dimensions of the video display. 1080p corresponds to 1920 x 1080 pixels, 768p corresponds to 1366 x 768 pixels."
|
||||
)
|
||||
|
||||
|
||||
class MinimaxVideoGenerationResponse(BaseModel):
|
||||
base_resp: MinimaxBaseResponse
|
||||
task_id: str = Field(
|
||||
..., description='The task ID for the asynchronous video generation task.'
|
||||
)
|
||||
@ -20,9 +20,9 @@ from comfy_api_nodes.apis.client import (
|
||||
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
download_url_to_bytesio,
|
||||
bytesio_to_image_tensor,
|
||||
resize_mask_to_image,
|
||||
)
|
||||
from comfy_api_nodes.util import bytesio_to_image_tensor
|
||||
from server import PromptServer
|
||||
|
||||
V1_V1_RES_MAP = {
|
||||
|
||||
@ -1,69 +1,51 @@
|
||||
from __future__ import annotations
|
||||
from inspect import cleandoc
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, IO
|
||||
from comfy_api.input_impl.video_types import VideoFromFile
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.apis.luma_api import (
|
||||
LumaImageModel,
|
||||
LumaVideoModel,
|
||||
LumaVideoOutputResolution,
|
||||
LumaVideoModelOutputDuration,
|
||||
LumaAspectRatio,
|
||||
LumaState,
|
||||
LumaImageGenerationRequest,
|
||||
LumaGenerationRequest,
|
||||
LumaGeneration,
|
||||
LumaCharacterRef,
|
||||
LumaModifyImageRef,
|
||||
LumaConceptChain,
|
||||
LumaGeneration,
|
||||
LumaGenerationRequest,
|
||||
LumaImageGenerationRequest,
|
||||
LumaImageIdentity,
|
||||
LumaImageModel,
|
||||
LumaImageReference,
|
||||
LumaIO,
|
||||
LumaKeyframes,
|
||||
LumaModifyImageRef,
|
||||
LumaReference,
|
||||
LumaReferenceChain,
|
||||
LumaImageReference,
|
||||
LumaKeyframes,
|
||||
LumaConceptChain,
|
||||
LumaIO,
|
||||
LumaVideoModel,
|
||||
LumaVideoModelOutputDuration,
|
||||
LumaVideoOutputResolution,
|
||||
get_luma_concepts,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
EmptyRequest,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
download_url_to_image_tensor,
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
process_image_response,
|
||||
validate_string,
|
||||
)
|
||||
from server import PromptServer
|
||||
from comfy_api_nodes.util import validate_string
|
||||
|
||||
import aiohttp
|
||||
import torch
|
||||
from io import BytesIO
|
||||
|
||||
LUMA_T2V_AVERAGE_DURATION = 105
|
||||
LUMA_I2V_AVERAGE_DURATION = 100
|
||||
|
||||
def image_result_url_extractor(response: LumaGeneration):
|
||||
return response.assets.image if hasattr(response, "assets") and hasattr(response.assets, "image") else None
|
||||
|
||||
def video_result_url_extractor(response: LumaGeneration):
|
||||
return response.assets.video if hasattr(response, "assets") and hasattr(response.assets, "video") else None
|
||||
|
||||
class LumaReferenceNode(IO.ComfyNode):
|
||||
"""
|
||||
Holds an image and weight for use with Luma Generate Image node.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="LumaReferenceNode",
|
||||
display_name="Luma Reference",
|
||||
category="api node/image/Luma",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Holds an image and weight for use with Luma Generate Image node.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
@ -83,17 +65,10 @@ class LumaReferenceNode(IO.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[IO.Custom(LumaIO.LUMA_REF).Output(display_name="luma_ref")],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(
|
||||
cls, image: torch.Tensor, weight: float, luma_ref: LumaReferenceChain = None
|
||||
) -> IO.NodeOutput:
|
||||
def execute(cls, image: torch.Tensor, weight: float, luma_ref: LumaReferenceChain = None) -> IO.NodeOutput:
|
||||
if luma_ref is not None:
|
||||
luma_ref = luma_ref.clone()
|
||||
else:
|
||||
@ -103,17 +78,13 @@ class LumaReferenceNode(IO.ComfyNode):
|
||||
|
||||
|
||||
class LumaConceptsNode(IO.ComfyNode):
|
||||
"""
|
||||
Holds one or more Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="LumaConceptsNode",
|
||||
display_name="Luma Concepts",
|
||||
category="api node/video/Luma",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"concept1",
|
||||
@ -138,11 +109,6 @@ class LumaConceptsNode(IO.ComfyNode):
|
||||
),
|
||||
],
|
||||
outputs=[IO.Custom(LumaIO.LUMA_CONCEPTS).Output(display_name="luma_concepts")],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@ -161,17 +127,13 @@ class LumaConceptsNode(IO.ComfyNode):
|
||||
|
||||
|
||||
class LumaImageGenerationNode(IO.ComfyNode):
|
||||
"""
|
||||
Generates images synchronously based on prompt and aspect ratio.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="LumaImageNode",
|
||||
display_name="Luma Text to Image",
|
||||
category="api node/image/Luma",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates images synchronously based on prompt and aspect ratio.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -237,45 +199,30 @@ class LumaImageGenerationNode(IO.ComfyNode):
|
||||
aspect_ratio: str,
|
||||
seed,
|
||||
style_image_weight: float,
|
||||
image_luma_ref: LumaReferenceChain = None,
|
||||
style_image: torch.Tensor = None,
|
||||
character_image: torch.Tensor = None,
|
||||
image_luma_ref: Optional[LumaReferenceChain] = None,
|
||||
style_image: Optional[torch.Tensor] = None,
|
||||
character_image: Optional[torch.Tensor] = None,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=True, min_length=3)
|
||||
auth_kwargs = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
# handle image_luma_ref
|
||||
api_image_ref = None
|
||||
if image_luma_ref is not None:
|
||||
api_image_ref = await cls._convert_luma_refs(
|
||||
image_luma_ref, max_refs=4, auth_kwargs=auth_kwargs,
|
||||
)
|
||||
api_image_ref = await cls._convert_luma_refs(image_luma_ref, max_refs=4)
|
||||
# handle style_luma_ref
|
||||
api_style_ref = None
|
||||
if style_image is not None:
|
||||
api_style_ref = await cls._convert_style_image(
|
||||
style_image, weight=style_image_weight, auth_kwargs=auth_kwargs,
|
||||
)
|
||||
api_style_ref = await cls._convert_style_image(style_image, weight=style_image_weight)
|
||||
# handle character_ref images
|
||||
character_ref = None
|
||||
if character_image is not None:
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
character_image, max_images=4, auth_kwargs=auth_kwargs,
|
||||
)
|
||||
character_ref = LumaCharacterRef(
|
||||
identity0=LumaImageIdentity(images=download_urls)
|
||||
)
|
||||
download_urls = await upload_images_to_comfyapi(cls, character_image, max_images=4)
|
||||
character_ref = LumaCharacterRef(identity0=LumaImageIdentity(images=download_urls))
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/luma/generations/image",
|
||||
method=HttpMethod.POST,
|
||||
request_model=LumaImageGenerationRequest,
|
||||
response_model=LumaGeneration,
|
||||
),
|
||||
request=LumaImageGenerationRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/luma/generations/image", method="POST"),
|
||||
response_model=LumaGeneration,
|
||||
data=LumaImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
model=model,
|
||||
aspect_ratio=aspect_ratio,
|
||||
@ -283,41 +230,21 @@ class LumaImageGenerationNode(IO.ComfyNode):
|
||||
style_ref=api_style_ref,
|
||||
character_ref=character_ref,
|
||||
),
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_api: LumaGeneration = await operation.execute()
|
||||
|
||||
operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/luma/generations/{response_api.id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=LumaGeneration,
|
||||
),
|
||||
completed_statuses=[LumaState.completed],
|
||||
failed_statuses=[LumaState.failed],
|
||||
response_poll = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"),
|
||||
response_model=LumaGeneration,
|
||||
status_extractor=lambda x: x.state,
|
||||
result_url_extractor=image_result_url_extractor,
|
||||
node_id=cls.hidden.unique_id,
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_poll = await operation.execute()
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(response_poll.assets.image) as img_response:
|
||||
img = process_image_response(await img_response.content.read())
|
||||
return IO.NodeOutput(img)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(response_poll.assets.image))
|
||||
|
||||
@classmethod
|
||||
async def _convert_luma_refs(
|
||||
cls, luma_ref: LumaReferenceChain, max_refs: int, auth_kwargs: Optional[dict[str,str]] = None
|
||||
):
|
||||
async def _convert_luma_refs(cls, luma_ref: LumaReferenceChain, max_refs: int):
|
||||
luma_urls = []
|
||||
ref_count = 0
|
||||
for ref in luma_ref.refs:
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
ref.image, max_images=1, auth_kwargs=auth_kwargs
|
||||
)
|
||||
download_urls = await upload_images_to_comfyapi(cls, ref.image, max_images=1)
|
||||
luma_urls.append(download_urls[0])
|
||||
ref_count += 1
|
||||
if ref_count >= max_refs:
|
||||
@ -325,27 +252,19 @@ class LumaImageGenerationNode(IO.ComfyNode):
|
||||
return luma_ref.create_api_model(download_urls=luma_urls, max_refs=max_refs)
|
||||
|
||||
@classmethod
|
||||
async def _convert_style_image(
|
||||
cls, style_image: torch.Tensor, weight: float, auth_kwargs: Optional[dict[str,str]] = None
|
||||
):
|
||||
chain = LumaReferenceChain(
|
||||
first_ref=LumaReference(image=style_image, weight=weight)
|
||||
)
|
||||
return await cls._convert_luma_refs(chain, max_refs=1, auth_kwargs=auth_kwargs)
|
||||
async def _convert_style_image(cls, style_image: torch.Tensor, weight: float):
|
||||
chain = LumaReferenceChain(first_ref=LumaReference(image=style_image, weight=weight))
|
||||
return await cls._convert_luma_refs(chain, max_refs=1)
|
||||
|
||||
|
||||
class LumaImageModifyNode(IO.ComfyNode):
|
||||
"""
|
||||
Modifies images synchronously based on prompt and aspect ratio.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="LumaImageModifyNode",
|
||||
display_name="Luma Image to Image",
|
||||
category="api node/image/Luma",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Modifies images synchronously based on prompt and aspect ratio.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
@ -395,68 +314,37 @@ class LumaImageModifyNode(IO.ComfyNode):
|
||||
image_weight: float,
|
||||
seed,
|
||||
) -> IO.NodeOutput:
|
||||
auth_kwargs = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
# first, upload image
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
image, max_images=1, auth_kwargs=auth_kwargs,
|
||||
)
|
||||
download_urls = await upload_images_to_comfyapi(cls, image, max_images=1)
|
||||
image_url = download_urls[0]
|
||||
# next, make Luma call with download url provided
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/luma/generations/image",
|
||||
method=HttpMethod.POST,
|
||||
request_model=LumaImageGenerationRequest,
|
||||
response_model=LumaGeneration,
|
||||
),
|
||||
request=LumaImageGenerationRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/luma/generations/image", method="POST"),
|
||||
response_model=LumaGeneration,
|
||||
data=LumaImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
model=model,
|
||||
modify_image_ref=LumaModifyImageRef(
|
||||
url=image_url, weight=round(max(min(1.0-image_weight, 0.98), 0.0), 2)
|
||||
url=image_url, weight=round(max(min(1.0 - image_weight, 0.98), 0.0), 2)
|
||||
),
|
||||
),
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_api: LumaGeneration = await operation.execute()
|
||||
|
||||
operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/luma/generations/{response_api.id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=LumaGeneration,
|
||||
),
|
||||
completed_statuses=[LumaState.completed],
|
||||
failed_statuses=[LumaState.failed],
|
||||
response_poll = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"),
|
||||
response_model=LumaGeneration,
|
||||
status_extractor=lambda x: x.state,
|
||||
result_url_extractor=image_result_url_extractor,
|
||||
node_id=cls.hidden.unique_id,
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_poll = await operation.execute()
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(response_poll.assets.image) as img_response:
|
||||
img = process_image_response(await img_response.content.read())
|
||||
return IO.NodeOutput(img)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(response_poll.assets.image))
|
||||
|
||||
|
||||
class LumaTextToVideoGenerationNode(IO.ComfyNode):
|
||||
"""
|
||||
Generates videos synchronously based on prompt and output_size.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="LumaVideoNode",
|
||||
display_name="Luma Text to Video",
|
||||
category="api node/video/Luma",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos synchronously based on prompt and output_size.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -498,7 +386,7 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode):
|
||||
"luma_concepts",
|
||||
tooltip="Optional Camera Concepts to dictate camera motion via the Luma Concepts node.",
|
||||
optional=True,
|
||||
)
|
||||
),
|
||||
],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
@ -519,24 +407,17 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode):
|
||||
duration: str,
|
||||
loop: bool,
|
||||
seed,
|
||||
luma_concepts: LumaConceptChain = None,
|
||||
luma_concepts: Optional[LumaConceptChain] = None,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False, min_length=3)
|
||||
duration = duration if model != LumaVideoModel.ray_1_6 else None
|
||||
resolution = resolution if model != LumaVideoModel.ray_1_6 else None
|
||||
|
||||
auth_kwargs = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/luma/generations",
|
||||
method=HttpMethod.POST,
|
||||
request_model=LumaGenerationRequest,
|
||||
response_model=LumaGeneration,
|
||||
),
|
||||
request=LumaGenerationRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/luma/generations", method="POST"),
|
||||
response_model=LumaGeneration,
|
||||
data=LumaGenerationRequest(
|
||||
prompt=prompt,
|
||||
model=model,
|
||||
resolution=resolution,
|
||||
@ -545,47 +426,25 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode):
|
||||
loop=loop,
|
||||
concepts=luma_concepts.create_api_model() if luma_concepts else None,
|
||||
),
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_api: LumaGeneration = await operation.execute()
|
||||
|
||||
if cls.hidden.unique_id:
|
||||
PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", cls.hidden.unique_id)
|
||||
|
||||
operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/luma/generations/{response_api.id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=LumaGeneration,
|
||||
),
|
||||
completed_statuses=[LumaState.completed],
|
||||
failed_statuses=[LumaState.failed],
|
||||
response_poll = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"),
|
||||
response_model=LumaGeneration,
|
||||
status_extractor=lambda x: x.state,
|
||||
result_url_extractor=video_result_url_extractor,
|
||||
node_id=cls.hidden.unique_id,
|
||||
estimated_duration=LUMA_T2V_AVERAGE_DURATION,
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_poll = await operation.execute()
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(response_poll.assets.video) as vid_response:
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read())))
|
||||
return IO.NodeOutput(await download_url_to_video_output(response_poll.assets.video))
|
||||
|
||||
|
||||
class LumaImageToVideoGenerationNode(IO.ComfyNode):
|
||||
"""
|
||||
Generates videos synchronously based on prompt, input images, and output_size.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="LumaImageToVideoNode",
|
||||
display_name="Luma Image to Video",
|
||||
category="api node/video/Luma",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos synchronously based on prompt, input images, and output_size.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -637,7 +496,7 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
|
||||
"luma_concepts",
|
||||
tooltip="Optional Camera Concepts to dictate camera motion via the Luma Concepts node.",
|
||||
optional=True,
|
||||
)
|
||||
),
|
||||
],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
@ -662,25 +521,15 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
|
||||
luma_concepts: LumaConceptChain = None,
|
||||
) -> IO.NodeOutput:
|
||||
if first_image is None and last_image is None:
|
||||
raise Exception(
|
||||
"At least one of first_image and last_image requires an input."
|
||||
)
|
||||
auth_kwargs = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
keyframes = await cls._convert_to_keyframes(first_image, last_image, auth_kwargs=auth_kwargs)
|
||||
raise Exception("At least one of first_image and last_image requires an input.")
|
||||
keyframes = await cls._convert_to_keyframes(first_image, last_image)
|
||||
duration = duration if model != LumaVideoModel.ray_1_6 else None
|
||||
resolution = resolution if model != LumaVideoModel.ray_1_6 else None
|
||||
|
||||
operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/luma/generations",
|
||||
method=HttpMethod.POST,
|
||||
request_model=LumaGenerationRequest,
|
||||
response_model=LumaGeneration,
|
||||
),
|
||||
request=LumaGenerationRequest(
|
||||
response_api = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/luma/generations", method="POST"),
|
||||
response_model=LumaGeneration,
|
||||
data=LumaGenerationRequest(
|
||||
prompt=prompt,
|
||||
model=model,
|
||||
aspect_ratio=LumaAspectRatio.ratio_16_9, # ignored, but still needed by the API for some reason
|
||||
@ -690,54 +539,31 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
|
||||
keyframes=keyframes,
|
||||
concepts=luma_concepts.create_api_model() if luma_concepts else None,
|
||||
),
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_api: LumaGeneration = await operation.execute()
|
||||
|
||||
if cls.hidden.unique_id:
|
||||
PromptServer.instance.send_progress_text(f"Luma video generation started: {response_api.id}", cls.hidden.unique_id)
|
||||
|
||||
operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path=f"/proxy/luma/generations/{response_api.id}",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=LumaGeneration,
|
||||
),
|
||||
completed_statuses=[LumaState.completed],
|
||||
failed_statuses=[LumaState.failed],
|
||||
response_poll = await poll_op(
|
||||
cls,
|
||||
poll_endpoint=ApiEndpoint(path=f"/proxy/luma/generations/{response_api.id}"),
|
||||
response_model=LumaGeneration,
|
||||
status_extractor=lambda x: x.state,
|
||||
result_url_extractor=video_result_url_extractor,
|
||||
node_id=cls.hidden.unique_id,
|
||||
estimated_duration=LUMA_I2V_AVERAGE_DURATION,
|
||||
auth_kwargs=auth_kwargs,
|
||||
)
|
||||
response_poll = await operation.execute()
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.get(response_poll.assets.video) as vid_response:
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(await vid_response.content.read())))
|
||||
return IO.NodeOutput(await download_url_to_video_output(response_poll.assets.video))
|
||||
|
||||
@classmethod
|
||||
async def _convert_to_keyframes(
|
||||
cls,
|
||||
first_image: torch.Tensor = None,
|
||||
last_image: torch.Tensor = None,
|
||||
auth_kwargs: Optional[dict[str,str]] = None,
|
||||
):
|
||||
if first_image is None and last_image is None:
|
||||
return None
|
||||
frame0 = None
|
||||
frame1 = None
|
||||
if first_image is not None:
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
first_image, max_images=1, auth_kwargs=auth_kwargs,
|
||||
)
|
||||
download_urls = await upload_images_to_comfyapi(cls, first_image, max_images=1)
|
||||
frame0 = LumaImageReference(type="image", url=download_urls[0])
|
||||
if last_image is not None:
|
||||
download_urls = await upload_images_to_comfyapi(
|
||||
last_image, max_images=1, auth_kwargs=auth_kwargs,
|
||||
)
|
||||
download_urls = await upload_images_to_comfyapi(cls, last_image, max_images=1)
|
||||
frame1 = LumaImageReference(type="image", url=download_urls[0])
|
||||
return LumaKeyframes(frame0=frame0, frame1=frame1)
|
||||
|
||||
|
||||
@ -1,71 +1,57 @@
|
||||
from inspect import cleandoc
|
||||
from typing import Optional
|
||||
import logging
|
||||
import torch
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, IO
|
||||
from comfy_api.input_impl.video_types import VideoFromFile
|
||||
from comfy_api_nodes.apis import (
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.apis.minimax_api import (
|
||||
MinimaxFileRetrieveResponse,
|
||||
MiniMaxModel,
|
||||
MinimaxTaskResultResponse,
|
||||
MinimaxVideoGenerationRequest,
|
||||
MinimaxVideoGenerationResponse,
|
||||
MinimaxFileRetrieveResponse,
|
||||
MinimaxTaskResultResponse,
|
||||
SubjectReferenceItem,
|
||||
MiniMaxModel,
|
||||
)
|
||||
from comfy_api_nodes.apis.client import (
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
HttpMethod,
|
||||
SynchronousOperation,
|
||||
PollingOperation,
|
||||
EmptyRequest,
|
||||
)
|
||||
from comfy_api_nodes.apinode_utils import (
|
||||
download_url_to_bytesio,
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
validate_string,
|
||||
)
|
||||
from comfy_api_nodes.util import validate_string
|
||||
from server import PromptServer
|
||||
|
||||
|
||||
I2V_AVERAGE_DURATION = 114
|
||||
T2V_AVERAGE_DURATION = 234
|
||||
|
||||
|
||||
async def _generate_mm_video(
|
||||
cls: type[IO.ComfyNode],
|
||||
*,
|
||||
auth: dict[str, str],
|
||||
node_id: str,
|
||||
prompt_text: str,
|
||||
seed: int,
|
||||
model: str,
|
||||
image: Optional[torch.Tensor] = None, # used for ImageToVideo
|
||||
subject: Optional[torch.Tensor] = None, # used for SubjectToVideo
|
||||
image: Optional[torch.Tensor] = None, # used for ImageToVideo
|
||||
subject: Optional[torch.Tensor] = None, # used for SubjectToVideo
|
||||
average_duration: Optional[int] = None,
|
||||
) -> IO.NodeOutput:
|
||||
if image is None:
|
||||
validate_string(prompt_text, field_name="prompt_text")
|
||||
# upload image, if passed in
|
||||
image_url = None
|
||||
if image is not None:
|
||||
image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=auth))[0]
|
||||
image_url = (await upload_images_to_comfyapi(cls, image, max_images=1))[0]
|
||||
|
||||
# TODO: figure out how to deal with subject properly, API returns invalid params when using S2V-01 model
|
||||
subject_reference = None
|
||||
if subject is not None:
|
||||
subject_url = (await upload_images_to_comfyapi(subject, max_images=1, auth_kwargs=auth))[0]
|
||||
subject_url = (await upload_images_to_comfyapi(cls, subject, max_images=1))[0]
|
||||
subject_reference = [SubjectReferenceItem(image=subject_url)]
|
||||
|
||||
|
||||
video_generate_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/video_generation",
|
||||
method=HttpMethod.POST,
|
||||
request_model=MinimaxVideoGenerationRequest,
|
||||
response_model=MinimaxVideoGenerationResponse,
|
||||
),
|
||||
request=MinimaxVideoGenerationRequest(
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/video_generation", method="POST"),
|
||||
response_model=MinimaxVideoGenerationResponse,
|
||||
data=MinimaxVideoGenerationRequest(
|
||||
model=MiniMaxModel(model),
|
||||
prompt=prompt_text,
|
||||
callback_url=None,
|
||||
@ -73,81 +59,50 @@ async def _generate_mm_video(
|
||||
subject_reference=subject_reference,
|
||||
prompt_optimizer=None,
|
||||
),
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response = await video_generate_operation.execute()
|
||||
|
||||
task_id = response.task_id
|
||||
if not task_id:
|
||||
raise Exception(f"MiniMax generation failed: {response.base_resp}")
|
||||
|
||||
video_generate_operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/query/video_generation",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MinimaxTaskResultResponse,
|
||||
query_params={"task_id": task_id},
|
||||
),
|
||||
completed_statuses=["Success"],
|
||||
failed_statuses=["Fail"],
|
||||
task_result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/query/video_generation", query_params={"task_id": task_id}),
|
||||
response_model=MinimaxTaskResultResponse,
|
||||
status_extractor=lambda x: x.status.value,
|
||||
estimated_duration=average_duration,
|
||||
node_id=node_id,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
task_result = await video_generate_operation.execute()
|
||||
|
||||
file_id = task_result.file_id
|
||||
if file_id is None:
|
||||
raise Exception("Request was not successful. Missing file ID.")
|
||||
file_retrieve_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/files/retrieve",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MinimaxFileRetrieveResponse,
|
||||
query_params={"file_id": int(file_id)},
|
||||
),
|
||||
request=EmptyRequest(),
|
||||
auth_kwargs=auth,
|
||||
file_result = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/files/retrieve", query_params={"file_id": int(file_id)}),
|
||||
response_model=MinimaxFileRetrieveResponse,
|
||||
)
|
||||
file_result = await file_retrieve_operation.execute()
|
||||
|
||||
file_url = file_result.file.download_url
|
||||
if file_url is None:
|
||||
raise Exception(
|
||||
f"No video was found in the response. Full response: {file_result.model_dump()}"
|
||||
)
|
||||
logging.info("Generated video URL: %s", file_url)
|
||||
if node_id:
|
||||
if hasattr(file_result.file, "backup_download_url"):
|
||||
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
|
||||
else:
|
||||
message = f"Result URL: {file_url}"
|
||||
PromptServer.instance.send_progress_text(message, node_id)
|
||||
|
||||
# Download and return as VideoFromFile
|
||||
video_io = await download_url_to_bytesio(file_url)
|
||||
if video_io is None:
|
||||
error_msg = f"Failed to download video from {file_url}"
|
||||
logging.error(error_msg)
|
||||
raise Exception(error_msg)
|
||||
return IO.NodeOutput(VideoFromFile(video_io))
|
||||
raise Exception(f"No video was found in the response. Full response: {file_result.model_dump()}")
|
||||
if file_result.file.backup_download_url:
|
||||
try:
|
||||
return IO.NodeOutput(await download_url_to_video_output(file_url, timeout=10, max_retries=2))
|
||||
except Exception: # if we have a second URL to retrieve the result, try again using that one
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_video_output(file_result.file.backup_download_url, max_retries=3)
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(file_url))
|
||||
|
||||
|
||||
class MinimaxTextToVideoNode(IO.ComfyNode):
|
||||
"""
|
||||
Generates videos synchronously based on a prompt, and optional parameters using MiniMax's API.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MinimaxTextToVideoNode",
|
||||
display_name="MiniMax Text to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos synchronously based on a prompt, and optional parameters.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt_text",
|
||||
@ -189,11 +144,7 @@ class MinimaxTextToVideoNode(IO.ComfyNode):
|
||||
seed: int = 0,
|
||||
) -> IO.NodeOutput:
|
||||
return await _generate_mm_video(
|
||||
auth={
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
node_id=cls.hidden.unique_id,
|
||||
cls,
|
||||
prompt_text=prompt_text,
|
||||
seed=seed,
|
||||
model=model,
|
||||
@ -204,17 +155,13 @@ class MinimaxTextToVideoNode(IO.ComfyNode):
|
||||
|
||||
|
||||
class MinimaxImageToVideoNode(IO.ComfyNode):
|
||||
"""
|
||||
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MinimaxImageToVideoNode",
|
||||
display_name="MiniMax Image to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos synchronously based on an image and prompt, and optional parameters.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
@ -261,11 +208,7 @@ class MinimaxImageToVideoNode(IO.ComfyNode):
|
||||
seed: int = 0,
|
||||
) -> IO.NodeOutput:
|
||||
return await _generate_mm_video(
|
||||
auth={
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
node_id=cls.hidden.unique_id,
|
||||
cls,
|
||||
prompt_text=prompt_text,
|
||||
seed=seed,
|
||||
model=model,
|
||||
@ -276,17 +219,13 @@ class MinimaxImageToVideoNode(IO.ComfyNode):
|
||||
|
||||
|
||||
class MinimaxSubjectToVideoNode(IO.ComfyNode):
|
||||
"""
|
||||
Generates videos synchronously based on an image and prompt, and optional parameters using MiniMax's API.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MinimaxSubjectToVideoNode",
|
||||
display_name="MiniMax Subject to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos synchronously based on an image and prompt, and optional parameters.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"subject",
|
||||
@ -333,11 +272,7 @@ class MinimaxSubjectToVideoNode(IO.ComfyNode):
|
||||
seed: int = 0,
|
||||
) -> IO.NodeOutput:
|
||||
return await _generate_mm_video(
|
||||
auth={
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
},
|
||||
node_id=cls.hidden.unique_id,
|
||||
cls,
|
||||
prompt_text=prompt_text,
|
||||
seed=seed,
|
||||
model=model,
|
||||
@ -348,15 +283,13 @@ class MinimaxSubjectToVideoNode(IO.ComfyNode):
|
||||
|
||||
|
||||
class MinimaxHailuoVideoNode(IO.ComfyNode):
|
||||
"""Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model."""
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id="MinimaxHailuoVideoNode",
|
||||
display_name="MiniMax Hailuo Video",
|
||||
category="api node/video/MiniMax",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
description="Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt_text",
|
||||
@ -420,10 +353,6 @@ class MinimaxHailuoVideoNode(IO.ComfyNode):
|
||||
resolution: str = "768P",
|
||||
model: str = "MiniMax-Hailuo-02",
|
||||
) -> IO.NodeOutput:
|
||||
auth = {
|
||||
"auth_token": cls.hidden.auth_token_comfy_org,
|
||||
"comfy_api_key": cls.hidden.api_key_comfy_org,
|
||||
}
|
||||
if first_frame_image is None:
|
||||
validate_string(prompt_text, field_name="prompt_text")
|
||||
|
||||
@ -435,16 +364,13 @@ class MinimaxHailuoVideoNode(IO.ComfyNode):
|
||||
# upload image, if passed in
|
||||
image_url = None
|
||||
if first_frame_image is not None:
|
||||
image_url = (await upload_images_to_comfyapi(first_frame_image, max_images=1, auth_kwargs=auth))[0]
|
||||
image_url = (await upload_images_to_comfyapi(cls, first_frame_image, max_images=1))[0]
|
||||
|
||||
video_generate_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/video_generation",
|
||||
method=HttpMethod.POST,
|
||||
request_model=MinimaxVideoGenerationRequest,
|
||||
response_model=MinimaxVideoGenerationResponse,
|
||||
),
|
||||
request=MinimaxVideoGenerationRequest(
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/video_generation", method="POST"),
|
||||
response_model=MinimaxVideoGenerationResponse,
|
||||
data=MinimaxVideoGenerationRequest(
|
||||
model=MiniMaxModel(model),
|
||||
prompt=prompt_text,
|
||||
callback_url=None,
|
||||
@ -453,67 +379,42 @@ class MinimaxHailuoVideoNode(IO.ComfyNode):
|
||||
duration=duration,
|
||||
resolution=resolution,
|
||||
),
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
response = await video_generate_operation.execute()
|
||||
|
||||
task_id = response.task_id
|
||||
if not task_id:
|
||||
raise Exception(f"MiniMax generation failed: {response.base_resp}")
|
||||
|
||||
average_duration = 120 if resolution == "768P" else 240
|
||||
video_generate_operation = PollingOperation(
|
||||
poll_endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/query/video_generation",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MinimaxTaskResultResponse,
|
||||
query_params={"task_id": task_id},
|
||||
),
|
||||
completed_statuses=["Success"],
|
||||
failed_statuses=["Fail"],
|
||||
task_result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/query/video_generation", query_params={"task_id": task_id}),
|
||||
response_model=MinimaxTaskResultResponse,
|
||||
status_extractor=lambda x: x.status.value,
|
||||
estimated_duration=average_duration,
|
||||
node_id=cls.hidden.unique_id,
|
||||
auth_kwargs=auth,
|
||||
)
|
||||
task_result = await video_generate_operation.execute()
|
||||
|
||||
file_id = task_result.file_id
|
||||
if file_id is None:
|
||||
raise Exception("Request was not successful. Missing file ID.")
|
||||
file_retrieve_operation = SynchronousOperation(
|
||||
endpoint=ApiEndpoint(
|
||||
path="/proxy/minimax/files/retrieve",
|
||||
method=HttpMethod.GET,
|
||||
request_model=EmptyRequest,
|
||||
response_model=MinimaxFileRetrieveResponse,
|
||||
query_params={"file_id": int(file_id)},
|
||||
),
|
||||
request=EmptyRequest(),
|
||||
auth_kwargs=auth,
|
||||
file_result = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/minimax/files/retrieve", query_params={"file_id": int(file_id)}),
|
||||
response_model=MinimaxFileRetrieveResponse,
|
||||
)
|
||||
file_result = await file_retrieve_operation.execute()
|
||||
|
||||
file_url = file_result.file.download_url
|
||||
if file_url is None:
|
||||
raise Exception(
|
||||
f"No video was found in the response. Full response: {file_result.model_dump()}"
|
||||
)
|
||||
logging.info("Generated video URL: %s", file_url)
|
||||
if cls.hidden.unique_id:
|
||||
if hasattr(file_result.file, "backup_download_url"):
|
||||
message = f"Result URL: {file_url}\nBackup URL: {file_result.file.backup_download_url}"
|
||||
else:
|
||||
message = f"Result URL: {file_url}"
|
||||
PromptServer.instance.send_progress_text(message, cls.hidden.unique_id)
|
||||
raise Exception(f"No video was found in the response. Full response: {file_result.model_dump()}")
|
||||
|
||||
video_io = await download_url_to_bytesio(file_url)
|
||||
if video_io is None:
|
||||
error_msg = f"Failed to download video from {file_url}"
|
||||
logging.error(error_msg)
|
||||
raise Exception(error_msg)
|
||||
return IO.NodeOutput(VideoFromFile(video_io))
|
||||
if file_result.file.backup_download_url:
|
||||
try:
|
||||
return IO.NodeOutput(await download_url_to_video_output(file_url, timeout=10, max_retries=2))
|
||||
except Exception: # if we have a second URL to retrieve the result, try again using that one
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_video_output(file_result.file.backup_download_url, max_retries=3)
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(file_url))
|
||||
|
||||
|
||||
class MinimaxExtension(ComfyExtension):
|
||||
|
||||
@ -78,7 +78,7 @@ class _PollUIState:
|
||||
|
||||
_RETRY_STATUS = {408, 429, 500, 502, 503, 504}
|
||||
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed"]
|
||||
FAILED_STATUSES = ["cancelled", "canceled", "failed", "error"]
|
||||
FAILED_STATUSES = ["cancelled", "canceled", "fail", "failed", "error"]
|
||||
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted"]
|
||||
|
||||
|
||||
|
||||
@ -232,11 +232,12 @@ async def download_url_to_video_output(
|
||||
video_url: str,
|
||||
*,
|
||||
timeout: float = None,
|
||||
max_retries: int = 5,
|
||||
cls: type[COMFY_IO.ComfyNode] = None,
|
||||
) -> VideoFromFile:
|
||||
"""Downloads a video from a URL and returns a `VIDEO` output."""
|
||||
result = BytesIO()
|
||||
await download_url_to_bytesio(video_url, result, timeout=timeout, cls=cls)
|
||||
await download_url_to_bytesio(video_url, result, timeout=timeout, max_retries=max_retries, cls=cls)
|
||||
return VideoFromFile(result)
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user