mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-08 21:44:33 +08:00
[V3] convert nodes_mask.py to V3 schema (#10669)
* convert nodes_mask.py to V3 schema * set "Preview Mask" as display name for MaskPreview
This commit is contained in:
parent
117bf3f2bd
commit
913f86b727
@ -3,11 +3,10 @@ import scipy.ndimage
|
||||
import torch
|
||||
import comfy.utils
|
||||
import node_helpers
|
||||
import folder_paths
|
||||
import random
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, IO, UI
|
||||
|
||||
import nodes
|
||||
from nodes import MAX_RESOLUTION
|
||||
|
||||
def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False):
|
||||
source = source.to(destination.device)
|
||||
@ -46,202 +45,213 @@ def composite(destination, source, x, y, mask = None, multiplier = 8, resize_sou
|
||||
destination[..., top:bottom, left:right] = source_portion + destination_portion
|
||||
return destination
|
||||
|
||||
class LatentCompositeMasked:
|
||||
class LatentCompositeMasked(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("LATENT",),
|
||||
"source": ("LATENT",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
||||
"resize_source": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("LATENT",)
|
||||
FUNCTION = "composite"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="LatentCompositeMasked",
|
||||
category="latent",
|
||||
inputs=[
|
||||
IO.Latent.Input("destination"),
|
||||
IO.Latent.Input("source"),
|
||||
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
|
||||
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
|
||||
IO.Boolean.Input("resize_source", default=False),
|
||||
IO.Mask.Input("mask", optional=True),
|
||||
],
|
||||
outputs=[IO.Latent.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "latent"
|
||||
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput:
|
||||
output = destination.copy()
|
||||
destination = destination["samples"].clone()
|
||||
source = source["samples"]
|
||||
output["samples"] = composite(destination, source, x, y, mask, 8, resize_source)
|
||||
return (output,)
|
||||
return IO.NodeOutput(output)
|
||||
|
||||
class ImageCompositeMasked:
|
||||
composite = execute # TODO: remove
|
||||
|
||||
|
||||
class ImageCompositeMasked(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("IMAGE",),
|
||||
"source": ("IMAGE",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"resize_source": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "composite"
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ImageCompositeMasked",
|
||||
category="image",
|
||||
inputs=[
|
||||
IO.Image.Input("destination"),
|
||||
IO.Image.Input("source"),
|
||||
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Boolean.Input("resize_source", default=False),
|
||||
IO.Mask.Input("mask", optional=True),
|
||||
],
|
||||
outputs=[IO.Image.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "image"
|
||||
|
||||
def composite(self, destination, source, x, y, resize_source, mask = None):
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput:
|
||||
destination, source = node_helpers.image_alpha_fix(destination, source)
|
||||
destination = destination.clone().movedim(-1, 1)
|
||||
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
|
||||
return (output,)
|
||||
return IO.NodeOutput(output)
|
||||
|
||||
class MaskToImage:
|
||||
composite = execute # TODO: remove
|
||||
|
||||
|
||||
class MaskToImage(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MaskToImage",
|
||||
display_name="Convert Mask to Image",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
],
|
||||
outputs=[IO.Image.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "mask_to_image"
|
||||
|
||||
def mask_to_image(self, mask):
|
||||
@classmethod
|
||||
def execute(cls, mask) -> IO.NodeOutput:
|
||||
result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
||||
return (result,)
|
||||
return IO.NodeOutput(result)
|
||||
|
||||
class ImageToMask:
|
||||
mask_to_image = execute # TODO: remove
|
||||
|
||||
|
||||
class ImageToMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
"channel": (["red", "green", "blue", "alpha"],),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ImageToMask",
|
||||
display_name="Convert Image to Mask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Combo.Input("channel", options=["red", "green", "blue", "alpha"]),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "image_to_mask"
|
||||
|
||||
def image_to_mask(self, image, channel):
|
||||
@classmethod
|
||||
def execute(cls, image, channel) -> IO.NodeOutput:
|
||||
channels = ["red", "green", "blue", "alpha"]
|
||||
mask = image[:, :, :, channels.index(channel)]
|
||||
return (mask,)
|
||||
return IO.NodeOutput(mask)
|
||||
|
||||
class ImageColorToMask:
|
||||
image_to_mask = execute # TODO: remove
|
||||
|
||||
|
||||
class ImageColorToMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ImageColorToMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Int.Input("color", default=0, min=0, max=0xFFFFFF, step=1, display_mode=IO.NumberDisplay.number),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "image_to_mask"
|
||||
|
||||
def image_to_mask(self, image, color):
|
||||
@classmethod
|
||||
def execute(cls, image, color) -> IO.NodeOutput:
|
||||
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
|
||||
temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2]
|
||||
mask = torch.where(temp == color, 1.0, 0).float()
|
||||
return (mask,)
|
||||
return IO.NodeOutput(mask)
|
||||
|
||||
class SolidMask:
|
||||
image_to_mask = execute # TODO: remove
|
||||
|
||||
|
||||
class SolidMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="SolidMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "solid"
|
||||
|
||||
def solid(self, value, width, height):
|
||||
@classmethod
|
||||
def execute(cls, value, width, height) -> IO.NodeOutput:
|
||||
out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu")
|
||||
return (out,)
|
||||
return IO.NodeOutput(out)
|
||||
|
||||
class InvertMask:
|
||||
solid = execute # TODO: remove
|
||||
|
||||
|
||||
class InvertMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="InvertMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "invert"
|
||||
|
||||
def invert(self, mask):
|
||||
@classmethod
|
||||
def execute(cls, mask) -> IO.NodeOutput:
|
||||
out = 1.0 - mask
|
||||
return (out,)
|
||||
return IO.NodeOutput(out)
|
||||
|
||||
class CropMask:
|
||||
invert = execute # TODO: remove
|
||||
|
||||
|
||||
class CropMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="CropMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "crop"
|
||||
|
||||
def crop(self, mask, x, y, width, height):
|
||||
@classmethod
|
||||
def execute(cls, mask, x, y, width, height) -> IO.NodeOutput:
|
||||
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
|
||||
out = mask[:, y:y + height, x:x + width]
|
||||
return (out,)
|
||||
return IO.NodeOutput(out)
|
||||
|
||||
class MaskComposite:
|
||||
crop = execute # TODO: remove
|
||||
|
||||
|
||||
class MaskComposite(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"destination": ("MASK",),
|
||||
"source": ("MASK",),
|
||||
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"operation": (["multiply", "add", "subtract", "and", "or", "xor"],),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MaskComposite",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("destination"),
|
||||
IO.Mask.Input("source"),
|
||||
IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "combine"
|
||||
|
||||
def combine(self, destination, source, x, y, operation):
|
||||
@classmethod
|
||||
def execute(cls, destination, source, x, y, operation) -> IO.NodeOutput:
|
||||
output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
|
||||
source = source.reshape((-1, source.shape[-2], source.shape[-1]))
|
||||
|
||||
@ -267,28 +277,29 @@ class MaskComposite:
|
||||
|
||||
output = torch.clamp(output, 0.0, 1.0)
|
||||
|
||||
return (output,)
|
||||
return IO.NodeOutput(output)
|
||||
|
||||
class FeatherMask:
|
||||
combine = execute # TODO: remove
|
||||
|
||||
|
||||
class FeatherMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="FeatherMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
IO.Int.Input("left", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("top", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("right", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Int.Input("bottom", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "feather"
|
||||
|
||||
def feather(self, mask, left, top, right, bottom):
|
||||
@classmethod
|
||||
def execute(cls, mask, left, top, right, bottom) -> IO.NodeOutput:
|
||||
output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone()
|
||||
|
||||
left = min(left, output.shape[-1])
|
||||
@ -312,26 +323,28 @@ class FeatherMask:
|
||||
feather_rate = (y + 1) / bottom
|
||||
output[:, -y, :] *= feather_rate
|
||||
|
||||
return (output,)
|
||||
return IO.NodeOutput(output)
|
||||
|
||||
class GrowMask:
|
||||
feather = execute # TODO: remove
|
||||
|
||||
|
||||
class GrowMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"expand": ("INT", {"default": 0, "min": -MAX_RESOLUTION, "max": MAX_RESOLUTION, "step": 1}),
|
||||
"tapered_corners": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="GrowMask",
|
||||
display_name="Grow Mask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
IO.Int.Input("expand", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1),
|
||||
IO.Boolean.Input("tapered_corners", default=True),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
|
||||
FUNCTION = "expand_mask"
|
||||
|
||||
def expand_mask(self, mask, expand, tapered_corners):
|
||||
@classmethod
|
||||
def execute(cls, mask, expand, tapered_corners) -> IO.NodeOutput:
|
||||
c = 0 if tapered_corners else 1
|
||||
kernel = np.array([[c, 1, c],
|
||||
[1, 1, 1],
|
||||
@ -347,69 +360,74 @@ class GrowMask:
|
||||
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
|
||||
output = torch.from_numpy(output)
|
||||
out.append(output)
|
||||
return (torch.stack(out, dim=0),)
|
||||
return IO.NodeOutput(torch.stack(out, dim=0))
|
||||
|
||||
class ThresholdMask:
|
||||
expand_mask = execute # TODO: remove
|
||||
|
||||
|
||||
class ThresholdMask(IO.ComfyNode):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"mask": ("MASK",),
|
||||
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}
|
||||
}
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="ThresholdMask",
|
||||
category="mask",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
IO.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01),
|
||||
],
|
||||
outputs=[IO.Mask.Output()],
|
||||
)
|
||||
|
||||
CATEGORY = "mask"
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "image_to_mask"
|
||||
|
||||
def image_to_mask(self, mask, value):
|
||||
@classmethod
|
||||
def execute(cls, mask, value) -> IO.NodeOutput:
|
||||
mask = (mask > value).float()
|
||||
return (mask,)
|
||||
return IO.NodeOutput(mask)
|
||||
|
||||
image_to_mask = execute # TODO: remove
|
||||
|
||||
|
||||
# Mask Preview - original implement from
|
||||
# https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81
|
||||
# upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
|
||||
class MaskPreview(nodes.SaveImage):
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_temp_directory()
|
||||
self.type = "temp"
|
||||
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
||||
self.compress_level = 4
|
||||
class MaskPreview(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="MaskPreview",
|
||||
display_name="Preview Mask",
|
||||
category="mask",
|
||||
description="Saves the input images to your ComfyUI output directory.",
|
||||
inputs=[
|
||||
IO.Mask.Input("mask"),
|
||||
],
|
||||
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {"mask": ("MASK",), },
|
||||
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
||||
}
|
||||
|
||||
FUNCTION = "execute"
|
||||
CATEGORY = "mask"
|
||||
|
||||
def execute(self, mask, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
||||
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
|
||||
return self.save_images(preview, filename_prefix, prompt, extra_pnginfo)
|
||||
def execute(cls, mask, filename_prefix="ComfyUI") -> IO.NodeOutput:
|
||||
return IO.NodeOutput(ui=UI.PreviewMask(mask))
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"LatentCompositeMasked": LatentCompositeMasked,
|
||||
"ImageCompositeMasked": ImageCompositeMasked,
|
||||
"MaskToImage": MaskToImage,
|
||||
"ImageToMask": ImageToMask,
|
||||
"ImageColorToMask": ImageColorToMask,
|
||||
"SolidMask": SolidMask,
|
||||
"InvertMask": InvertMask,
|
||||
"CropMask": CropMask,
|
||||
"MaskComposite": MaskComposite,
|
||||
"FeatherMask": FeatherMask,
|
||||
"GrowMask": GrowMask,
|
||||
"ThresholdMask": ThresholdMask,
|
||||
"MaskPreview": MaskPreview
|
||||
}
|
||||
class MaskExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
LatentCompositeMasked,
|
||||
ImageCompositeMasked,
|
||||
MaskToImage,
|
||||
ImageToMask,
|
||||
ImageColorToMask,
|
||||
SolidMask,
|
||||
InvertMask,
|
||||
CropMask,
|
||||
MaskComposite,
|
||||
FeatherMask,
|
||||
GrowMask,
|
||||
ThresholdMask,
|
||||
MaskPreview,
|
||||
]
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"ImageToMask": "Convert Image to Mask",
|
||||
"MaskToImage": "Convert Mask to Image",
|
||||
}
|
||||
|
||||
async def comfy_entrypoint() -> MaskExtension:
|
||||
return MaskExtension()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user