convert nodes_lora_extract.py to V3 schema (#10182)

This commit is contained in:
Alexander Piskun 2025-10-09 09:11:45 +03:00 committed by GitHub
parent 2ba8d7cce8
commit 989f715d92
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -5,6 +5,8 @@ import folder_paths
import os
import logging
from enum import Enum
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
CLAMP_QUANTILE = 0.99
@ -71,32 +73,40 @@ def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu()
return output_sd
class LoraSave:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
class LoraSave(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="LoraSave",
display_name="Extract and Save Lora",
category="_for_testing",
inputs=[
io.String.Input("filename_prefix", default="loras/ComfyUI_extracted_lora"),
io.Int.Input("rank", default=8, min=1, max=4096, step=1),
io.Combo.Input("lora_type", options=tuple(LORA_TYPES.keys())),
io.Boolean.Input("bias_diff", default=True),
io.Model.Input(
"model_diff",
tooltip="The ModelSubtract output to be converted to a lora.",
optional=True,
),
io.Clip.Input(
"text_encoder_diff",
tooltip="The CLIPSubtract output to be converted to a lora.",
optional=True,
),
],
is_experimental=True,
is_output_node=True,
)
@classmethod
def INPUT_TYPES(s):
return {"required": {"filename_prefix": ("STRING", {"default": "loras/ComfyUI_extracted_lora"}),
"rank": ("INT", {"default": 8, "min": 1, "max": 4096, "step": 1}),
"lora_type": (tuple(LORA_TYPES.keys()),),
"bias_diff": ("BOOLEAN", {"default": True}),
},
"optional": {"model_diff": ("MODEL", {"tooltip": "The ModelSubtract output to be converted to a lora."}),
"text_encoder_diff": ("CLIP", {"tooltip": "The CLIPSubtract output to be converted to a lora."})},
}
RETURN_TYPES = ()
FUNCTION = "save"
OUTPUT_NODE = True
CATEGORY = "_for_testing"
def save(self, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None):
def execute(cls, filename_prefix, rank, lora_type, bias_diff, model_diff=None, text_encoder_diff=None) -> io.NodeOutput:
if model_diff is None and text_encoder_diff is None:
return {}
return io.NodeOutput()
lora_type = LORA_TYPES.get(lora_type)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory())
output_sd = {}
if model_diff is not None:
@ -108,12 +118,16 @@ class LoraSave:
output_checkpoint = os.path.join(full_output_folder, output_checkpoint)
comfy.utils.save_torch_file(output_sd, output_checkpoint, metadata=None)
return {}
return io.NodeOutput()
NODE_CLASS_MAPPINGS = {
"LoraSave": LoraSave
}
NODE_DISPLAY_NAME_MAPPINGS = {
"LoraSave": "Extract and Save Lora"
}
class LoraSaveExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
LoraSave,
]
async def comfy_entrypoint() -> LoraSaveExtension:
return LoraSaveExtension()