convert nodes_audio.py to V3 schema (#10798)

This commit is contained in:
Alexander Piskun 2025-12-04 03:35:04 +02:00 committed by GitHub
parent 440268d394
commit dce518c2b4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 382 additions and 371 deletions

View File

@ -319,9 +319,10 @@ class AudioSaveHelper:
for key, value in metadata.items(): for key, value in metadata.items():
output_container.metadata[key] = value output_container.metadata[key] = value
layout = "mono" if waveform.shape[0] == 1 else "stereo"
# Set up the output stream with appropriate properties # Set up the output stream with appropriate properties
if format == "opus": if format == "opus":
out_stream = output_container.add_stream("libopus", rate=sample_rate) out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout)
if quality == "64k": if quality == "64k":
out_stream.bit_rate = 64000 out_stream.bit_rate = 64000
elif quality == "96k": elif quality == "96k":
@ -333,7 +334,7 @@ class AudioSaveHelper:
elif quality == "320k": elif quality == "320k":
out_stream.bit_rate = 320000 out_stream.bit_rate = 320000
elif format == "mp3": elif format == "mp3":
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate) out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout)
if quality == "V0": if quality == "V0":
# TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool # TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
out_stream.codec_context.qscale = 1 out_stream.codec_context.qscale = 1
@ -342,12 +343,12 @@ class AudioSaveHelper:
elif quality == "320k": elif quality == "320k":
out_stream.bit_rate = 320000 out_stream.bit_rate = 320000
else: # format == "flac": else: # format == "flac":
out_stream = output_container.add_stream("flac", rate=sample_rate) out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout)
frame = av.AudioFrame.from_ndarray( frame = av.AudioFrame.from_ndarray(
waveform.movedim(0, 1).reshape(1, -1).float().numpy(), waveform.movedim(0, 1).reshape(1, -1).float().numpy(),
format="flt", format="flt",
layout="mono" if waveform.shape[0] == 1 else "stereo", layout=layout,
) )
frame.sample_rate = sample_rate frame.sample_rate = sample_rate
frame.pts = 0 frame.pts = 0

View File

@ -6,65 +6,80 @@ import torch
import comfy.model_management import comfy.model_management
import folder_paths import folder_paths
import os import os
import io
import json
import random
import hashlib import hashlib
import node_helpers import node_helpers
import logging import logging
from comfy.cli_args import args from typing_extensions import override
from comfy.comfy_types import FileLocator from comfy_api.latest import ComfyExtension, IO, UI
class EmptyLatentAudio: class EmptyLatentAudio(IO.ComfyNode):
def __init__(self): @classmethod
self.device = comfy.model_management.intermediate_device() def define_schema(cls):
return IO.Schema(
node_id="EmptyLatentAudio",
display_name="Empty Latent Audio",
category="latent/audio",
inputs=[
IO.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1),
IO.Int.Input(
"batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
),
],
outputs=[IO.Latent.Output()],
)
@classmethod @classmethod
def INPUT_TYPES(s): def execute(cls, seconds, batch_size) -> IO.NodeOutput:
return {"required": {"seconds": ("FLOAT", {"default": 47.6, "min": 1.0, "max": 1000.0, "step": 0.1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."}),
}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/audio"
def generate(self, seconds, batch_size):
length = round((seconds * 44100 / 2048) / 2) * 2 length = round((seconds * 44100 / 2048) / 2) * 2
latent = torch.zeros([batch_size, 64, length], device=self.device) latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
return ({"samples":latent, "type": "audio"}, ) return IO.NodeOutput({"samples":latent, "type": "audio"})
class ConditioningStableAudio: generate = execute # TODO: remove
class ConditioningStableAudio(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": {"positive": ("CONDITIONING", ), return IO.Schema(
"negative": ("CONDITIONING", ), node_id="ConditioningStableAudio",
"seconds_start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1000.0, "step": 0.1}), category="conditioning",
"seconds_total": ("FLOAT", {"default": 47.0, "min": 0.0, "max": 1000.0, "step": 0.1}), inputs=[
}} IO.Conditioning.Input("positive"),
IO.Conditioning.Input("negative"),
IO.Float.Input("seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1),
IO.Float.Input("seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1),
],
outputs=[
IO.Conditioning.Output(display_name="positive"),
IO.Conditioning.Output(display_name="negative"),
],
)
RETURN_TYPES = ("CONDITIONING","CONDITIONING") @classmethod
RETURN_NAMES = ("positive", "negative") def execute(cls, positive, negative, seconds_start, seconds_total) -> IO.NodeOutput:
FUNCTION = "append"
CATEGORY = "conditioning"
def append(self, positive, negative, seconds_start, seconds_total):
positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}) positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total})
negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}) negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total})
return (positive, negative) return IO.NodeOutput(positive, negative)
class VAEEncodeAudio: append = execute # TODO: remove
class VAEEncodeAudio(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": { "audio": ("AUDIO", ), "vae": ("VAE", )}} return IO.Schema(
RETURN_TYPES = ("LATENT",) node_id="VAEEncodeAudio",
FUNCTION = "encode" display_name="VAE Encode Audio",
category="latent/audio",
inputs=[
IO.Audio.Input("audio"),
IO.Vae.Input("vae"),
],
outputs=[IO.Latent.Output()],
)
CATEGORY = "latent/audio" @classmethod
def execute(cls, vae, audio) -> IO.NodeOutput:
def encode(self, vae, audio):
sample_rate = audio["sample_rate"] sample_rate = audio["sample_rate"]
if 44100 != sample_rate: if 44100 != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
@ -72,213 +87,134 @@ class VAEEncodeAudio:
waveform = audio["waveform"] waveform = audio["waveform"]
t = vae.encode(waveform.movedim(1, -1)) t = vae.encode(waveform.movedim(1, -1))
return ({"samples":t}, ) return IO.NodeOutput({"samples":t})
class VAEDecodeAudio: encode = execute # TODO: remove
class VAEDecodeAudio(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} return IO.Schema(
RETURN_TYPES = ("AUDIO",) node_id="VAEDecodeAudio",
FUNCTION = "decode" display_name="VAE Decode Audio",
category="latent/audio",
inputs=[
IO.Latent.Input("samples"),
IO.Vae.Input("vae"),
],
outputs=[IO.Audio.Output()],
)
CATEGORY = "latent/audio" @classmethod
def execute(cls, vae, samples) -> IO.NodeOutput:
def decode(self, vae, samples):
audio = vae.decode(samples["samples"]).movedim(-1, 1) audio = vae.decode(samples["samples"]).movedim(-1, 1)
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
std[std < 1.0] = 1.0 std[std < 1.0] = 1.0
audio /= std audio /= std
return ({"waveform": audio, "sample_rate": 44100}, ) return IO.NodeOutput({"waveform": audio, "sample_rate": 44100})
decode = execute # TODO: remove
def save_audio(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None, quality="128k"): class SaveAudio(IO.ComfyNode):
@classmethod
filename_prefix += self.prefix_append def define_schema(cls):
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir) return IO.Schema(
results: list[FileLocator] = [] node_id="SaveAudio",
display_name="Save Audio (FLAC)",
# Prepare metadata dictionary category="audio",
metadata = {} inputs=[
if not args.disable_metadata: IO.Audio.Input("audio"),
if prompt is not None: IO.String.Input("filename_prefix", default="audio/ComfyUI"),
metadata["prompt"] = json.dumps(prompt) ],
if extra_pnginfo is not None: hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
for x in extra_pnginfo: is_output_node=True,
metadata[x] = json.dumps(extra_pnginfo[x]) )
# Opus supported sample rates
OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.{format}"
output_path = os.path.join(full_output_folder, file)
# Use original sample rate initially
sample_rate = audio["sample_rate"]
# Handle Opus sample rate requirements
if format == "opus":
if sample_rate > 48000:
sample_rate = 48000
elif sample_rate not in OPUS_RATES:
# Find the next highest supported rate
for rate in sorted(OPUS_RATES):
if rate > sample_rate:
sample_rate = rate
break
if sample_rate not in OPUS_RATES: # Fallback if still not supported
sample_rate = 48000
# Resample if necessary
if sample_rate != audio["sample_rate"]:
waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
# Create output with specified format
output_buffer = io.BytesIO()
output_container = av.open(output_buffer, mode='w', format=format)
# Set metadata on the container
for key, value in metadata.items():
output_container.metadata[key] = value
layout = 'mono' if waveform.shape[0] == 1 else 'stereo'
# Set up the output stream with appropriate properties
if format == "opus":
out_stream = output_container.add_stream("libopus", rate=sample_rate, layout=layout)
if quality == "64k":
out_stream.bit_rate = 64000
elif quality == "96k":
out_stream.bit_rate = 96000
elif quality == "128k":
out_stream.bit_rate = 128000
elif quality == "192k":
out_stream.bit_rate = 192000
elif quality == "320k":
out_stream.bit_rate = 320000
elif format == "mp3":
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate, layout=layout)
if quality == "V0":
#TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
out_stream.codec_context.qscale = 1
elif quality == "128k":
out_stream.bit_rate = 128000
elif quality == "320k":
out_stream.bit_rate = 320000
else: #format == "flac":
out_stream = output_container.add_stream("flac", rate=sample_rate, layout=layout)
frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt', layout=layout)
frame.sample_rate = sample_rate
frame.pts = 0
output_container.mux(out_stream.encode(frame))
# Flush encoder
output_container.mux(out_stream.encode(None))
# Close containers
output_container.close()
# Write the output to file
output_buffer.seek(0)
with open(output_path, 'wb') as f:
f.write(output_buffer.getbuffer())
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
})
counter += 1
return { "ui": { "audio": results } }
class SaveAudio:
def __init__(self):
self.output_dir = folder_paths.get_output_directory()
self.type = "output"
self.prefix_append = ""
@classmethod @classmethod
def INPUT_TYPES(s): def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> IO.NodeOutput:
return {"required": { "audio": ("AUDIO", ), return IO.NodeOutput(
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), ui=UI.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format)
}, )
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
}
RETURN_TYPES = () save_flac = execute # TODO: remove
FUNCTION = "save_flac"
OUTPUT_NODE = True
CATEGORY = "audio" class SaveAudioMP3(IO.ComfyNode):
@classmethod
def save_flac(self, audio, filename_prefix="ComfyUI", format="flac", prompt=None, extra_pnginfo=None): def define_schema(cls):
return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo) return IO.Schema(
node_id="SaveAudioMP3",
class SaveAudioMP3: display_name="Save Audio (MP3)",
def __init__(self): category="audio",
self.output_dir = folder_paths.get_output_directory() inputs=[
self.type = "output" IO.Audio.Input("audio"),
self.prefix_append = "" IO.String.Input("filename_prefix", default="audio/ComfyUI"),
IO.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod @classmethod
def INPUT_TYPES(s): def execute(cls, audio, filename_prefix="ComfyUI", format="mp3", quality="128k") -> IO.NodeOutput:
return {"required": { "audio": ("AUDIO", ), return IO.NodeOutput(
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), ui=UI.AudioSaveHelper.get_save_audio_ui(
"quality": (["V0", "128k", "320k"], {"default": "V0"}), audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality
}, )
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, )
}
RETURN_TYPES = () save_mp3 = execute # TODO: remove
FUNCTION = "save_mp3"
OUTPUT_NODE = True
CATEGORY = "audio" class SaveAudioOpus(IO.ComfyNode):
@classmethod
def save_mp3(self, audio, filename_prefix="ComfyUI", format="mp3", prompt=None, extra_pnginfo=None, quality="128k"): def define_schema(cls):
return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) return IO.Schema(
node_id="SaveAudioOpus",
class SaveAudioOpus: display_name="Save Audio (Opus)",
def __init__(self): category="audio",
self.output_dir = folder_paths.get_output_directory() inputs=[
self.type = "output" IO.Audio.Input("audio"),
self.prefix_append = "" IO.String.Input("filename_prefix", default="audio/ComfyUI"),
IO.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"),
],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod @classmethod
def INPUT_TYPES(s): def execute(cls, audio, filename_prefix="ComfyUI", format="opus", quality="V3") -> IO.NodeOutput:
return {"required": { "audio": ("AUDIO", ), return IO.NodeOutput(
"filename_prefix": ("STRING", {"default": "audio/ComfyUI"}), ui=UI.AudioSaveHelper.get_save_audio_ui(
"quality": (["64k", "96k", "128k", "192k", "320k"], {"default": "128k"}), audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality
}, )
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, )
}
RETURN_TYPES = () save_opus = execute # TODO: remove
FUNCTION = "save_opus"
OUTPUT_NODE = True
CATEGORY = "audio" class PreviewAudio(IO.ComfyNode):
@classmethod
def save_opus(self, audio, filename_prefix="ComfyUI", format="opus", prompt=None, extra_pnginfo=None, quality="V3"): def define_schema(cls):
return save_audio(self, audio, filename_prefix, format, prompt, extra_pnginfo, quality) return IO.Schema(
node_id="PreviewAudio",
class PreviewAudio(SaveAudio): display_name="Preview Audio",
def __init__(self): category="audio",
self.output_dir = folder_paths.get_temp_directory() inputs=[
self.type = "temp" IO.Audio.Input("audio"),
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5)) ],
hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod @classmethod
def INPUT_TYPES(s): def execute(cls, audio) -> IO.NodeOutput:
return {"required": return IO.NodeOutput(ui=UI.PreviewAudio(audio, cls=cls))
{"audio": ("AUDIO", ), },
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, save_flac = execute # TODO: remove
}
def f32_pcm(wav: torch.Tensor) -> torch.Tensor: def f32_pcm(wav: torch.Tensor) -> torch.Tensor:
"""Convert audio to float 32 bits PCM format.""" """Convert audio to float 32 bits PCM format."""
@ -316,26 +252,30 @@ def load(filepath: str) -> tuple[torch.Tensor, int]:
wav = f32_pcm(wav) wav = f32_pcm(wav)
return wav, sr return wav, sr
class LoadAudio: class LoadAudio(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
input_dir = folder_paths.get_input_directory() input_dir = folder_paths.get_input_directory()
files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"])
return {"required": {"audio": (sorted(files), {"audio_upload": True})}} return IO.Schema(
node_id="LoadAudio",
display_name="Load Audio",
category="audio",
inputs=[
IO.Combo.Input("audio", upload=IO.UploadType.audio, options=sorted(files)),
],
outputs=[IO.Audio.Output()],
)
CATEGORY = "audio" @classmethod
def execute(cls, audio) -> IO.NodeOutput:
RETURN_TYPES = ("AUDIO", )
FUNCTION = "load"
def load(self, audio):
audio_path = folder_paths.get_annotated_filepath(audio) audio_path = folder_paths.get_annotated_filepath(audio)
waveform, sample_rate = load(audio_path) waveform, sample_rate = load(audio_path)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
return (audio, ) return IO.NodeOutput(audio)
@classmethod @classmethod
def IS_CHANGED(s, audio): def fingerprint_inputs(cls, audio):
image_path = folder_paths.get_annotated_filepath(audio) image_path = folder_paths.get_annotated_filepath(audio)
m = hashlib.sha256() m = hashlib.sha256()
with open(image_path, 'rb') as f: with open(image_path, 'rb') as f:
@ -343,46 +283,69 @@ class LoadAudio:
return m.digest().hex() return m.digest().hex()
@classmethod @classmethod
def VALIDATE_INPUTS(s, audio): def validate_inputs(cls, audio):
if not folder_paths.exists_annotated_filepath(audio): if not folder_paths.exists_annotated_filepath(audio):
return "Invalid audio file: {}".format(audio) return "Invalid audio file: {}".format(audio)
return True return True
class RecordAudio: load = execute # TODO: remove
class RecordAudio(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": {"audio": ("AUDIO_RECORD", {})}} return IO.Schema(
node_id="RecordAudio",
display_name="Record Audio",
category="audio",
inputs=[
IO.Custom("AUDIO_RECORD").Input("audio"),
],
outputs=[IO.Audio.Output()],
)
CATEGORY = "audio" @classmethod
def execute(cls, audio) -> IO.NodeOutput:
RETURN_TYPES = ("AUDIO", )
FUNCTION = "load"
def load(self, audio):
audio_path = folder_paths.get_annotated_filepath(audio) audio_path = folder_paths.get_annotated_filepath(audio)
waveform, sample_rate = load(audio_path) waveform, sample_rate = load(audio_path)
audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}
return (audio, ) return IO.NodeOutput(audio)
load = execute # TODO: remove
class TrimAudioDuration: class TrimAudioDuration(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(cls): def define_schema(cls):
return { return IO.Schema(
"required": { node_id="TrimAudioDuration",
"audio": ("AUDIO",), display_name="Trim Audio Duration",
"start_index": ("FLOAT", {"default": 0.0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Start time in seconds, can be negative to count from the end (supports sub-seconds)."}), description="Trim audio tensor into chosen time range.",
"duration": ("FLOAT", {"default": 60.0, "min": 0.0, "step": 0.01, "tooltip": "Duration in seconds"}), category="audio",
}, inputs=[
} IO.Audio.Input("audio"),
IO.Float.Input(
"start_index",
default=0.0,
min=-0xffffffffffffffff,
max=0xffffffffffffffff,
step=0.01,
tooltip="Start time in seconds, can be negative to count from the end (supports sub-seconds).",
),
IO.Float.Input(
"duration",
default=60.0,
min=0.0,
step=0.01,
tooltip="Duration in seconds",
),
],
outputs=[IO.Audio.Output()],
)
FUNCTION = "trim" @classmethod
RETURN_TYPES = ("AUDIO",) def execute(cls, audio, start_index, duration) -> IO.NodeOutput:
CATEGORY = "audio"
DESCRIPTION = "Trim audio tensor into chosen time range."
def trim(self, audio, start_index, duration):
waveform = audio["waveform"] waveform = audio["waveform"]
sample_rate = audio["sample_rate"] sample_rate = audio["sample_rate"]
audio_length = waveform.shape[-1] audio_length = waveform.shape[-1]
@ -399,23 +362,30 @@ class TrimAudioDuration:
if start_frame >= end_frame: if start_frame >= end_frame:
raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.") raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.")
return ({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate},) return IO.NodeOutput({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate})
trim = execute # TODO: remove
class SplitAudioChannels: class SplitAudioChannels(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": { return IO.Schema(
"audio": ("AUDIO",), node_id="SplitAudioChannels",
}} display_name="Split Audio Channels",
description="Separates the audio into left and right channels.",
category="audio",
inputs=[
IO.Audio.Input("audio"),
],
outputs=[
IO.Audio.Output(display_name="left"),
IO.Audio.Output(display_name="right"),
],
)
RETURN_TYPES = ("AUDIO", "AUDIO") @classmethod
RETURN_NAMES = ("left", "right") def execute(cls, audio) -> IO.NodeOutput:
FUNCTION = "separate"
CATEGORY = "audio"
DESCRIPTION = "Separates the audio into left and right channels."
def separate(self, audio):
waveform = audio["waveform"] waveform = audio["waveform"]
sample_rate = audio["sample_rate"] sample_rate = audio["sample_rate"]
@ -425,7 +395,9 @@ class SplitAudioChannels:
left_channel = waveform[..., 0:1, :] left_channel = waveform[..., 0:1, :]
right_channel = waveform[..., 1:2, :] right_channel = waveform[..., 1:2, :]
return ({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) return IO.NodeOutput({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate})
separate = execute # TODO: remove
def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2): def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2):
@ -443,21 +415,29 @@ def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_
return waveform_1, waveform_2, output_sample_rate return waveform_1, waveform_2, output_sample_rate
class AudioConcat: class AudioConcat(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": { return IO.Schema(
"audio1": ("AUDIO",), node_id="AudioConcat",
"audio2": ("AUDIO",), display_name="Audio Concat",
"direction": (['after', 'before'], {"default": 'after', "tooltip": "Whether to append audio2 after or before audio1."}), description="Concatenates the audio1 to audio2 in the specified direction.",
}} category="audio",
inputs=[
IO.Audio.Input("audio1"),
IO.Audio.Input("audio2"),
IO.Combo.Input(
"direction",
options=['after', 'before'],
default="after",
tooltip="Whether to append audio2 after or before audio1.",
)
],
outputs=[IO.Audio.Output()],
)
RETURN_TYPES = ("AUDIO",) @classmethod
FUNCTION = "concat" def execute(cls, audio1, audio2, direction) -> IO.NodeOutput:
CATEGORY = "audio"
DESCRIPTION = "Concatenates the audio1 to audio2 in the specified direction."
def concat(self, audio1, audio2, direction):
waveform_1 = audio1["waveform"] waveform_1 = audio1["waveform"]
waveform_2 = audio2["waveform"] waveform_2 = audio2["waveform"]
sample_rate_1 = audio1["sample_rate"] sample_rate_1 = audio1["sample_rate"]
@ -477,26 +457,33 @@ class AudioConcat:
elif direction == 'before': elif direction == 'before':
concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2) concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2)
return ({"waveform": concatenated_audio, "sample_rate": output_sample_rate},) return IO.NodeOutput({"waveform": concatenated_audio, "sample_rate": output_sample_rate})
concat = execute # TODO: remove
class AudioMerge: class AudioMerge(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(cls): def define_schema(cls):
return { return IO.Schema(
"required": { node_id="AudioMerge",
"audio1": ("AUDIO",), display_name="Audio Merge",
"audio2": ("AUDIO",), description="Combine two audio tracks by overlaying their waveforms.",
"merge_method": (["add", "mean", "subtract", "multiply"], {"tooltip": "The method used to combine the audio waveforms."}), category="audio",
}, inputs=[
} IO.Audio.Input("audio1"),
IO.Audio.Input("audio2"),
IO.Combo.Input(
"merge_method",
options=["add", "mean", "subtract", "multiply"],
tooltip="The method used to combine the audio waveforms.",
)
],
outputs=[IO.Audio.Output()],
)
FUNCTION = "merge" @classmethod
RETURN_TYPES = ("AUDIO",) def execute(cls, audio1, audio2, merge_method) -> IO.NodeOutput:
CATEGORY = "audio"
DESCRIPTION = "Combine two audio tracks by overlaying their waveforms."
def merge(self, audio1, audio2, merge_method):
waveform_1 = audio1["waveform"] waveform_1 = audio1["waveform"]
waveform_2 = audio2["waveform"] waveform_2 = audio2["waveform"]
sample_rate_1 = audio1["sample_rate"] sample_rate_1 = audio1["sample_rate"]
@ -530,85 +517,108 @@ class AudioMerge:
if max_val > 1.0: if max_val > 1.0:
waveform = waveform / max_val waveform = waveform / max_val
return ({"waveform": waveform, "sample_rate": output_sample_rate},) return IO.NodeOutput({"waveform": waveform, "sample_rate": output_sample_rate})
merge = execute # TODO: remove
class AudioAdjustVolume: class AudioAdjustVolume(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": { return IO.Schema(
"audio": ("AUDIO",), node_id="AudioAdjustVolume",
"volume": ("INT", {"default": 1.0, "min": -100, "max": 100, "tooltip": "Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc"}), display_name="Audio Adjust Volume",
}} category="audio",
inputs=[
IO.Audio.Input("audio"),
IO.Int.Input(
"volume",
default=1,
min=-100,
max=100,
tooltip="Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc",
)
],
outputs=[IO.Audio.Output()],
)
RETURN_TYPES = ("AUDIO",) @classmethod
FUNCTION = "adjust_volume" def execute(cls, audio, volume) -> IO.NodeOutput:
CATEGORY = "audio"
def adjust_volume(self, audio, volume):
if volume == 0: if volume == 0:
return (audio,) return IO.NodeOutput(audio)
waveform = audio["waveform"] waveform = audio["waveform"]
sample_rate = audio["sample_rate"] sample_rate = audio["sample_rate"]
gain = 10 ** (volume / 20) gain = 10 ** (volume / 20)
waveform = waveform * gain waveform = waveform * gain
return ({"waveform": waveform, "sample_rate": sample_rate},) return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate})
adjust_volume = execute # TODO: remove
class EmptyAudio: class EmptyAudio(IO.ComfyNode):
@classmethod @classmethod
def INPUT_TYPES(s): def define_schema(cls):
return {"required": { return IO.Schema(
"duration": ("FLOAT", {"default": 60.0, "min": 0.0, "max": 0xffffffffffffffff, "step": 0.01, "tooltip": "Duration of the empty audio clip in seconds"}), node_id="EmptyAudio",
"sample_rate": ("INT", {"default": 44100, "tooltip": "Sample rate of the empty audio clip."}), display_name="Empty Audio",
"channels": ("INT", {"default": 2, "min": 1, "max": 2, "tooltip": "Number of audio channels (1 for mono, 2 for stereo)."}), category="audio",
}} inputs=[
IO.Float.Input(
"duration",
default=60.0,
min=0.0,
max=0xffffffffffffffff,
step=0.01,
tooltip="Duration of the empty audio clip in seconds",
),
IO.Float.Input(
"sample_rate",
default=44100,
tooltip="Sample rate of the empty audio clip.",
),
IO.Float.Input(
"channels",
default=2,
min=1,
max=2,
tooltip="Number of audio channels (1 for mono, 2 for stereo).",
),
],
outputs=[IO.Audio.Output()],
)
RETURN_TYPES = ("AUDIO",) @classmethod
FUNCTION = "create_empty_audio" def execute(cls, duration, sample_rate, channels) -> IO.NodeOutput:
CATEGORY = "audio"
def create_empty_audio(self, duration, sample_rate, channels):
num_samples = int(round(duration * sample_rate)) num_samples = int(round(duration * sample_rate))
waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32) waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32)
return ({"waveform": waveform, "sample_rate": sample_rate},) return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate})
create_empty_audio = execute # TODO: remove
NODE_CLASS_MAPPINGS = { class AudioExtension(ComfyExtension):
"EmptyLatentAudio": EmptyLatentAudio, @override
"VAEEncodeAudio": VAEEncodeAudio, async def get_node_list(self) -> list[type[IO.ComfyNode]]:
"VAEDecodeAudio": VAEDecodeAudio, return [
"SaveAudio": SaveAudio, EmptyLatentAudio,
"SaveAudioMP3": SaveAudioMP3, VAEEncodeAudio,
"SaveAudioOpus": SaveAudioOpus, VAEDecodeAudio,
"LoadAudio": LoadAudio, SaveAudio,
"PreviewAudio": PreviewAudio, SaveAudioMP3,
"ConditioningStableAudio": ConditioningStableAudio, SaveAudioOpus,
"RecordAudio": RecordAudio, LoadAudio,
"TrimAudioDuration": TrimAudioDuration, PreviewAudio,
"SplitAudioChannels": SplitAudioChannels, ConditioningStableAudio,
"AudioConcat": AudioConcat, RecordAudio,
"AudioMerge": AudioMerge, TrimAudioDuration,
"AudioAdjustVolume": AudioAdjustVolume, SplitAudioChannels,
"EmptyAudio": EmptyAudio, AudioConcat,
} AudioMerge,
AudioAdjustVolume,
EmptyAudio,
]
NODE_DISPLAY_NAME_MAPPINGS = { async def comfy_entrypoint() -> AudioExtension:
"EmptyLatentAudio": "Empty Latent Audio", return AudioExtension()
"VAEEncodeAudio": "VAE Encode Audio",
"VAEDecodeAudio": "VAE Decode Audio",
"PreviewAudio": "Preview Audio",
"LoadAudio": "Load Audio",
"SaveAudio": "Save Audio (FLAC)",
"SaveAudioMP3": "Save Audio (MP3)",
"SaveAudioOpus": "Save Audio (Opus)",
"RecordAudio": "Record Audio",
"TrimAudioDuration": "Trim Audio Duration",
"SplitAudioChannels": "Split Audio Channels",
"AudioConcat": "Audio Concat",
"AudioMerge": "Audio Merge",
"AudioAdjustVolume": "Audio Adjust Volume",
"EmptyAudio": "Empty Audio",
}