mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-14 00:14:31 +08:00
Use same code for chroma and flux blocks so that optimizations are shared. (#10746)
This commit is contained in:
parent
1ef328c007
commit
f60923590c
@ -1,12 +1,9 @@
|
|||||||
import torch
|
import torch
|
||||||
from torch import Tensor, nn
|
from torch import Tensor, nn
|
||||||
|
|
||||||
from comfy.ldm.flux.math import attention
|
|
||||||
from comfy.ldm.flux.layers import (
|
from comfy.ldm.flux.layers import (
|
||||||
MLPEmbedder,
|
MLPEmbedder,
|
||||||
RMSNorm,
|
RMSNorm,
|
||||||
QKNorm,
|
|
||||||
SelfAttention,
|
|
||||||
ModulationOut,
|
ModulationOut,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -48,124 +45,6 @@ class Approximator(nn.Module):
|
|||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
class DoubleStreamBlock(nn.Module):
|
|
||||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
|
||||||
super().__init__()
|
|
||||||
|
|
||||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
|
||||||
self.num_heads = num_heads
|
|
||||||
self.hidden_size = hidden_size
|
|
||||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
||||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
|
||||||
|
|
||||||
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
||||||
self.img_mlp = nn.Sequential(
|
|
||||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
|
||||||
nn.GELU(approximate="tanh"),
|
|
||||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
|
||||||
)
|
|
||||||
|
|
||||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
||||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
|
||||||
|
|
||||||
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
||||||
self.txt_mlp = nn.Sequential(
|
|
||||||
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
|
||||||
nn.GELU(approximate="tanh"),
|
|
||||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
|
||||||
)
|
|
||||||
self.flipped_img_txt = flipped_img_txt
|
|
||||||
|
|
||||||
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
|
|
||||||
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
|
||||||
|
|
||||||
# prepare image for attention
|
|
||||||
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
|
|
||||||
img_qkv = self.img_attn.qkv(img_modulated)
|
|
||||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
||||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
|
||||||
|
|
||||||
# prepare txt for attention
|
|
||||||
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
|
|
||||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
|
||||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
||||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
|
||||||
|
|
||||||
# run actual attention
|
|
||||||
attn = attention(torch.cat((txt_q, img_q), dim=2),
|
|
||||||
torch.cat((txt_k, img_k), dim=2),
|
|
||||||
torch.cat((txt_v, img_v), dim=2),
|
|
||||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
|
||||||
|
|
||||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
|
||||||
|
|
||||||
# calculate the img bloks
|
|
||||||
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
|
|
||||||
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
|
|
||||||
|
|
||||||
# calculate the txt bloks
|
|
||||||
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
|
|
||||||
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
|
|
||||||
|
|
||||||
if txt.dtype == torch.float16:
|
|
||||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
|
||||||
|
|
||||||
return img, txt
|
|
||||||
|
|
||||||
|
|
||||||
class SingleStreamBlock(nn.Module):
|
|
||||||
"""
|
|
||||||
A DiT block with parallel linear layers as described in
|
|
||||||
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
hidden_size: int,
|
|
||||||
num_heads: int,
|
|
||||||
mlp_ratio: float = 4.0,
|
|
||||||
qk_scale: float = None,
|
|
||||||
dtype=None,
|
|
||||||
device=None,
|
|
||||||
operations=None
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.hidden_dim = hidden_size
|
|
||||||
self.num_heads = num_heads
|
|
||||||
head_dim = hidden_size // num_heads
|
|
||||||
self.scale = qk_scale or head_dim**-0.5
|
|
||||||
|
|
||||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
|
||||||
# qkv and mlp_in
|
|
||||||
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
|
||||||
# proj and mlp_out
|
|
||||||
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
|
||||||
|
|
||||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
|
|
||||||
|
|
||||||
self.hidden_size = hidden_size
|
|
||||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
|
||||||
|
|
||||||
self.mlp_act = nn.GELU(approximate="tanh")
|
|
||||||
|
|
||||||
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
|
|
||||||
mod = vec
|
|
||||||
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
|
|
||||||
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
|
||||||
|
|
||||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
|
||||||
q, k = self.norm(q, k, v)
|
|
||||||
|
|
||||||
# compute attention
|
|
||||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
|
||||||
# compute activation in mlp stream, cat again and run second linear layer
|
|
||||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
|
||||||
x.addcmul_(mod.gate, output)
|
|
||||||
if x.dtype == torch.float16:
|
|
||||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class LastLayer(nn.Module):
|
class LastLayer(nn.Module):
|
||||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|||||||
@ -11,12 +11,12 @@ import comfy.ldm.common_dit
|
|||||||
from comfy.ldm.flux.layers import (
|
from comfy.ldm.flux.layers import (
|
||||||
EmbedND,
|
EmbedND,
|
||||||
timestep_embedding,
|
timestep_embedding,
|
||||||
|
DoubleStreamBlock,
|
||||||
|
SingleStreamBlock,
|
||||||
)
|
)
|
||||||
|
|
||||||
from .layers import (
|
from .layers import (
|
||||||
DoubleStreamBlock,
|
|
||||||
LastLayer,
|
LastLayer,
|
||||||
SingleStreamBlock,
|
|
||||||
Approximator,
|
Approximator,
|
||||||
ChromaModulationOut,
|
ChromaModulationOut,
|
||||||
)
|
)
|
||||||
@ -90,6 +90,7 @@ class Chroma(nn.Module):
|
|||||||
self.num_heads,
|
self.num_heads,
|
||||||
mlp_ratio=params.mlp_ratio,
|
mlp_ratio=params.mlp_ratio,
|
||||||
qkv_bias=params.qkv_bias,
|
qkv_bias=params.qkv_bias,
|
||||||
|
modulation=False,
|
||||||
dtype=dtype, device=device, operations=operations
|
dtype=dtype, device=device, operations=operations
|
||||||
)
|
)
|
||||||
for _ in range(params.depth)
|
for _ in range(params.depth)
|
||||||
@ -98,7 +99,7 @@ class Chroma(nn.Module):
|
|||||||
|
|
||||||
self.single_blocks = nn.ModuleList(
|
self.single_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
|
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations)
|
||||||
for _ in range(params.depth_single_blocks)
|
for _ in range(params.depth_single_blocks)
|
||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|||||||
@ -10,12 +10,10 @@ from torch import Tensor, nn
|
|||||||
from einops import repeat
|
from einops import repeat
|
||||||
import comfy.ldm.common_dit
|
import comfy.ldm.common_dit
|
||||||
|
|
||||||
from comfy.ldm.flux.layers import EmbedND
|
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
|
||||||
|
|
||||||
from comfy.ldm.chroma.model import Chroma, ChromaParams
|
from comfy.ldm.chroma.model import Chroma, ChromaParams
|
||||||
from comfy.ldm.chroma.layers import (
|
from comfy.ldm.chroma.layers import (
|
||||||
DoubleStreamBlock,
|
|
||||||
SingleStreamBlock,
|
|
||||||
Approximator,
|
Approximator,
|
||||||
)
|
)
|
||||||
from .layers import (
|
from .layers import (
|
||||||
@ -89,7 +87,6 @@ class ChromaRadiance(Chroma):
|
|||||||
dtype=dtype, device=device, operations=operations
|
dtype=dtype, device=device, operations=operations
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
self.double_blocks = nn.ModuleList(
|
self.double_blocks = nn.ModuleList(
|
||||||
[
|
[
|
||||||
DoubleStreamBlock(
|
DoubleStreamBlock(
|
||||||
@ -97,6 +94,7 @@ class ChromaRadiance(Chroma):
|
|||||||
self.num_heads,
|
self.num_heads,
|
||||||
mlp_ratio=params.mlp_ratio,
|
mlp_ratio=params.mlp_ratio,
|
||||||
qkv_bias=params.qkv_bias,
|
qkv_bias=params.qkv_bias,
|
||||||
|
modulation=False,
|
||||||
dtype=dtype, device=device, operations=operations
|
dtype=dtype, device=device, operations=operations
|
||||||
)
|
)
|
||||||
for _ in range(params.depth)
|
for _ in range(params.depth)
|
||||||
@ -109,6 +107,7 @@ class ChromaRadiance(Chroma):
|
|||||||
self.hidden_size,
|
self.hidden_size,
|
||||||
self.num_heads,
|
self.num_heads,
|
||||||
mlp_ratio=params.mlp_ratio,
|
mlp_ratio=params.mlp_ratio,
|
||||||
|
modulation=False,
|
||||||
dtype=dtype, device=device, operations=operations,
|
dtype=dtype, device=device, operations=operations,
|
||||||
)
|
)
|
||||||
for _ in range(params.depth_single_blocks)
|
for _ in range(params.depth_single_blocks)
|
||||||
|
|||||||
@ -130,13 +130,17 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
|
|||||||
|
|
||||||
|
|
||||||
class DoubleStreamBlock(nn.Module):
|
class DoubleStreamBlock(nn.Module):
|
||||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, dtype=None, device=None, operations=None):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||||
self.num_heads = num_heads
|
self.num_heads = num_heads
|
||||||
self.hidden_size = hidden_size
|
self.hidden_size = hidden_size
|
||||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
self.modulation = modulation
|
||||||
|
|
||||||
|
if self.modulation:
|
||||||
|
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
@ -147,7 +151,9 @@ class DoubleStreamBlock(nn.Module):
|
|||||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||||
)
|
)
|
||||||
|
|
||||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
if self.modulation:
|
||||||
|
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
|
||||||
|
|
||||||
@ -160,8 +166,11 @@ class DoubleStreamBlock(nn.Module):
|
|||||||
self.flipped_img_txt = flipped_img_txt
|
self.flipped_img_txt = flipped_img_txt
|
||||||
|
|
||||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
|
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
|
||||||
img_mod1, img_mod2 = self.img_mod(vec)
|
if self.modulation:
|
||||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
img_mod1, img_mod2 = self.img_mod(vec)
|
||||||
|
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||||
|
else:
|
||||||
|
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
|
||||||
|
|
||||||
# prepare image for attention
|
# prepare image for attention
|
||||||
img_modulated = self.img_norm1(img)
|
img_modulated = self.img_norm1(img)
|
||||||
@ -236,6 +245,7 @@ class SingleStreamBlock(nn.Module):
|
|||||||
num_heads: int,
|
num_heads: int,
|
||||||
mlp_ratio: float = 4.0,
|
mlp_ratio: float = 4.0,
|
||||||
qk_scale: float = None,
|
qk_scale: float = None,
|
||||||
|
modulation=True,
|
||||||
dtype=None,
|
dtype=None,
|
||||||
device=None,
|
device=None,
|
||||||
operations=None
|
operations=None
|
||||||
@ -258,10 +268,17 @@ class SingleStreamBlock(nn.Module):
|
|||||||
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||||
|
|
||||||
self.mlp_act = nn.GELU(approximate="tanh")
|
self.mlp_act = nn.GELU(approximate="tanh")
|
||||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
if modulation:
|
||||||
|
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||||
|
else:
|
||||||
|
self.modulation = None
|
||||||
|
|
||||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
|
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
|
||||||
mod, _ = self.modulation(vec)
|
if self.modulation:
|
||||||
|
mod, _ = self.modulation(vec)
|
||||||
|
else:
|
||||||
|
mod = vec
|
||||||
|
|
||||||
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||||
|
|
||||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user