* mp: only count the offload cost of math once
This was previously bundling the combined weight storage and computation
cost
* ops: put all post async transfer compute on the main stream
Some models have massive weights that need either complex
dequantization or lora patching. Don't do these patchings on the offload
stream, instead do them on the main stream to syncrhonize the
potentially large vram spikes for these compute processes. This avoids
having to assume a worst case scenario of multiple offload streams
all spiking VRAM is parallel with whatever the main stream is doing.
* ops: dont take an offload stream if you dont need one
* ops: prioritize mem transfer
The async offload streams reason for existence is to transfer from
RAM to GPU. The post processing compute steps are a bonus on the side
stream, but if the compute stream is running a long kernel, it can
stall the side stream, as it wait to type-cast the bias before
transferring the weight. So do a pure xfer of the weight straight up,
then do everything bias, then go back to fix the weight type and do
weight patches.
* mm: factor out the current stream getter
Make this a reusable function.
* ops: sync the offload stream with the consumption of w&b
This sync is nessacary as pytorch will queue cuda async frees on the
same stream as created to tensor. In the case of async offload, this
will be on the offload stream.
Weights and biases can go out of scope in python which then
triggers the pytorch garbage collector to queue the free operation on
the offload stream possible before the compute stream has used the
weight. This causes a use after free on weight data leading to total
corruption of some workflows.
So sync the offload stream with the compute stream after the weight
has been used so the free has to wait for the weight to be used.
The cast_bias_weight is extended in a backwards compatible way with
the new behaviour opt-in on a defaulted parameter. This handles
custom node packs calling cast_bias_weight and defeatures
async-offload for them (as they do not handle the race).
The pattern is now:
cast_bias_weight(... , offloadable=True) #This might be offloaded
thing(weight, bias, ...)
uncast_bias_weight(...)
* controlnet: adopt new cast_bias_weight synchronization scheme
This is nessacary for safe async weight offloading.
* mm: sync the last stream in the queue, not the next
Currently this peeks ahead to sync the next stream in the queue of
streams with the compute stream. This doesnt allow a lot of
parallelization, as then end result is you can only get one weight load
ahead regardless of how many streams you have.
Rotate the loop logic here to synchronize the end of the queue before
returning the next stream. This allows weights to be loaded ahead of the
compute streams position.
* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.
* Updated design using Tensor Subclasses
* Fix FP8 MM
* An actually functional POC
* Remove CK reference and ensure correct compute dtype
* Update unit tests
* ruff lint
* Implement mixed precision operations with a registry design and metadate for quant spec in checkpoint.
* Updated design using Tensor Subclasses
* Fix FP8 MM
* An actually functional POC
* Remove CK reference and ensure correct compute dtype
* Update unit tests
* ruff lint
* Fix missing keys
* Rename quant dtype parameter
* Rename quant dtype parameter
* Fix unittests for CPU build
Turns out torch.compile has some gaps in context manager decorator
syntax support. I've sent patches to fix that in PyTorch, but it won't
be available for all the folks running older versions of PyTorch, hence
this trivial patch.
This should speed up the lowvram mode a bit. It currently is only enabled when --async-offload is used but it will be enabled by default in the future if there are no problems.
The idea is that you can indicate how much quality vs speed you want.
At the moment:
--fast 2 enables fp16 accumulation if your pytorch supports it.
--fast 5 enables fp8 matrix mult on fp8 models and the optimization above.
--fast without a number enables all optimizations.