* execution: Roll the UI cache into the outputs
Currently the UI cache is parallel to the output cache with
expectations of being a content superset of the output cache.
At the same time the UI and output cache are maintained completely
seperately, making it awkward to free the output cache content without
changing the behaviour of the UI cache.
There are two actual users (getters) of the UI cache. The first is
the case of a direct content hit on the output cache when executing a
node. This case is very naturally handled by merging the UI and outputs
cache.
The second case is the history JSON generation at the end of the prompt.
This currently works by asking the cache for all_node_ids and then
pulling the cache contents for those nodes. all_node_ids is the nodes
of the dynamic prompt.
So fold the UI cache into the output cache. The current UI cache setter
now writes to a prompt-scope dict. When the output cache is set, just
get this value from the dict and tuple up with the outputs.
When generating the history, simply iterate prompt-scope dict.
This prepares support for more complex caching strategies (like RAM
pressure caching) where less than 1 workflow will be cached and it
will be desirable to keep the UI cache and output cache in sync.
* sd: Implement RAM getter for VAE
* model_patcher: Implement RAM getter for ModelPatcher
* sd: Implement RAM getter for CLIP
* Implement RAM Pressure cache
Implement a cache sensitive to RAM pressure. When RAM headroom drops
down below a certain threshold, evict RAM-expensive nodes from the
cache.
Models and tensors are measured directly for RAM usage. An OOM score
is then computed based on the RAM usage of the node.
Note the due to indirection through shared objects (like a model
patcher), multiple nodes can account the same RAM as their individual
usage. The intent is this will free chains of nodes particularly
model loaders and associate loras as they all score similar and are
sorted in close to each other.
Has a bias towards unloading model nodes mid flow while being able
to keep results like text encodings and VAE.
* execution: Convert the cache entry to NamedTuple
As commented in review.
Convert this to a named tuple and abstract away the tuple type
completely from graph.py.
* execution: fold in dependency aware caching
This makes --cache-none compatiable with lazy and expanded
subgraphs.
Currently the --cache-none option is powered by the
DependencyAwareCache. The cache attempts to maintain a parallel
copy of the execution list data structure, however it is only
setup once at the start of execution and does not get meaninigful
updates to the execution list.
This causes multiple problems when --cache-none is used with lazy
and expanded subgraphs as the DAC does not accurately update its
copy of the execution data structure.
DAC has an attempt to handle subgraphs ensure_subcache however
this does not accurately connect to nodes outside the subgraph.
The current semantics of DAC are to free a node ASAP after the
dependent nodes are executed.
This means that if a subgraph refs such a node it will be requed
and re-executed by the execution_list but DAC wont see it in
its to-free lists anymore and leak memory.
Rather than try and cover all the cases where the execution list
changes from inside the cache, move the while problem to the
executor which maintains an always up-to-date copy of the wanted
data-structure.
The executor now has a fast-moving run-local cache of its own.
Each _to node has its own mini cache, and the cache is unconditionally
primed at the time of add_strong_link.
add_strong_link is called for all of static workflows, lazy links
and expanded subgraphs so its the singular source of truth for
output dependendencies.
In the case of a cache-hit, the executor cache will hold the non-none
value (it will respect updates if they happen somehow as well).
In the case of a cache-miss, the executor caches a None and will
wait for a notification to update the value when the node completes.
When a node completes execution, it simply releases its mini-cache
and in turn its strong refs on its direct anscestor outputs, allowing
for ASAP freeing (same as the DependencyAwareCache but a little more
automatic).
This now allows for re-implementation of --cache-none with no cache
at all. The dependency aware cache was also observing the dependency
sematics for the objects and UI cache which is not accurate (this
entire logic was always outputs specific).
This also prepares for more complex caching strategies (such as RAM
pressure based caching), where a cache can implement any freeing
strategy completely independently of the DepedancyAwareness
requirement.
* main: re-implement --cache-none as no cache at all
The execution list now tracks the dependency aware caching more
correctly that the DependancyAwareCache.
Change it to a cache that does nothing.
* test_execution: add --cache-none to the test suite
--cache-none is now expected to work universally. Run it through the
full unit test suite. Propagate the server parameterization for whether
or not the server is capabale of caching, so that the minority of tests
that specifically check for cache hits can if else. Hard assert NOT
caching in the else to give some coverage of --cache-none expected
behaviour to not acutally cache.
* execution: fold in dependency aware caching
This makes --cache-none compatiable with lazy and expanded
subgraphs.
Currently the --cache-none option is powered by the
DependencyAwareCache. The cache attempts to maintain a parallel
copy of the execution list data structure, however it is only
setup once at the start of execution and does not get meaninigful
updates to the execution list.
This causes multiple problems when --cache-none is used with lazy
and expanded subgraphs as the DAC does not accurately update its
copy of the execution data structure.
DAC has an attempt to handle subgraphs ensure_subcache however
this does not accurately connect to nodes outside the subgraph.
The current semantics of DAC are to free a node ASAP after the
dependent nodes are executed.
This means that if a subgraph refs such a node it will be requed
and re-executed by the execution_list but DAC wont see it in
its to-free lists anymore and leak memory.
Rather than try and cover all the cases where the execution list
changes from inside the cache, move the while problem to the
executor which maintains an always up-to-date copy of the wanted
data-structure.
The executor now has a fast-moving run-local cache of its own.
Each _to node has its own mini cache, and the cache is unconditionally
primed at the time of add_strong_link.
add_strong_link is called for all of static workflows, lazy links
and expanded subgraphs so its the singular source of truth for
output dependendencies.
In the case of a cache-hit, the executor cache will hold the non-none
value (it will respect updates if they happen somehow as well).
In the case of a cache-miss, the executor caches a None and will
wait for a notification to update the value when the node completes.
When a node completes execution, it simply releases its mini-cache
and in turn its strong refs on its direct anscestor outputs, allowing
for ASAP freeing (same as the DependencyAwareCache but a little more
automatic).
This now allows for re-implementation of --cache-none with no cache
at all. The dependency aware cache was also observing the dependency
sematics for the objects and UI cache which is not accurate (this
entire logic was always outputs specific).
This also prepares for more complex caching strategies (such as RAM
pressure based caching), where a cache can implement any freeing
strategy completely independently of the DepedancyAwareness
requirement.
* main: re-implement --cache-none as no cache at all
The execution list now tracks the dependency aware caching more
correctly that the DependancyAwareCache.
Change it to a cache that does nothing.
* test_execution: add --cache-none to the test suite
--cache-none is now expected to work universally. Run it through the
full unit test suite. Propagate the server parameterization for whether
or not the server is capabale of caching, so that the minority of tests
that specifically check for cache hits can if else. Hard assert NOT
caching in the else to give some coverage of --cache-none expected
behaviour to not acutally cache.
* Fix showing progress from other sessions
Because `client_id` was missing from ths `progress_state` message, it
was being sent to all connected sessions. This technically meant that if
someone had a graph with the same nodes, they would see the progress
updates for others.
Also added a test to prevent reoccurance and moved the tests around to
make CI easier to hook up.
* Fix CI issues related to timing-sensitive tests
* ComfyAPI Core v0.0.2
* Respond to PR feedback
* Fix Python 3.9 errors
* Fix missing backward compatibility proxy
* Reorganize types a bit
The input types, input impls, and utility types are now all available in
the versioned API. See the change in `comfy_extras/nodes_video.py` for
an example of their usage.
* Remove the need for `--generate-api-stubs`
* Fix generated stubs differing by Python version
* Fix ruff formatting issues
* Support for async execution functions
This commit adds support for node execution functions defined as async. When
a node's execution function is defined as async, we can continue
executing other nodes while it is processing.
Standard uses of `await` should "just work", but people will still have
to be careful if they spawn actual threads. Because torch doesn't really
have async/await versions of functions, this won't particularly help
with most locally-executing nodes, but it does work for e.g. web
requests to other machines.
In addition to the execute function, the `VALIDATE_INPUTS` and
`check_lazy_status` functions can also be defined as async, though we'll
only resolve one node at a time right now for those.
* Add the execution model tests to CI
* Add a missing file
It looks like this got caught by .gitignore? There's probably a better
place to put it, but I'm not sure what that is.
* Add the websocket library for automated tests
* Add additional tests for async error cases
Also fixes one bug that was found when an async function throws an error
after being scheduled on a task.
* Add a feature flags message to reduce bandwidth
We now only send 1 preview message of the latest type the client can
support.
We'll add a console warning when the client fails to send a feature
flags message at some point in the future.
* Add async tests to CI
* Don't actually add new tests in this PR
Will do it in a separate PR
* Resolve unit test in GPU-less runner
* Just remove the tests that GHA can't handle
* Change line endings to UNIX-style
* Avoid loading model_management.py so early
Because model_management.py has a top-level `logging.info`, we have to
be careful not to import that file before we call `setup_logging`. If we
do, we end up having the default logging handler registered in addition
to our custom one.
* add dependency aware cache that removed a cached node as soon as all of its decendents have executed. This allows users with lower RAM to run workflows they would otherwise not be able to run. The downside is that every workflow will fully run each time even if no nodes have changed.
* remove test code
* tidy code
* Reapply "Add union link connection type support (#5806)" (#5889)
This reverts commit bf9a90a145bffdeced29343d0d606278108be735.
* Fix union type breaks existing type workarounds
* Add non-string test
* Add tests for hacks and non-string types
* Support python versions lower than 3.11
Currently, if a graph partially fails validation (i.e. some outputs are
valid while others have links from missing nodes), the execution loop
could get an exception resulting in server lockup.
This isn't actually possible to reproduce via the default UI, but is a
potential issue for people using the API to construct invalid graphs.