* Initial Chroma Radiance support
* Minor Chroma Radiance cleanups
* Update Radiance nodes to ensure latents/images are on the intermediate device
* Fix Chroma Radiance memory estimation.
* Increase Chroma Radiance memory usage factor
* Increase Chroma Radiance memory usage factor once again
* Ensure images are multiples of 16 for Chroma Radiance
Add batch dimension and fix channels when necessary in ChromaRadianceImageToLatent node
* Tile Chroma Radiance NeRF to reduce memory consumption, update memory usage factor
* Update Radiance to support conv nerf final head type.
* Allow setting NeRF embedder dtype for Radiance
Bump Radiance nerf tile size to 32
Support EasyCache/LazyCache on Radiance (maybe)
* Add ChromaRadianceStubVAE node
* Crop Radiance image inputs to multiples of 16 instead of erroring to be in line with existing VAE behavior
* Convert Chroma Radiance nodes to V3 schema.
* Add ChromaRadianceOptions node and backend support.
Cleanups/refactoring to reduce code duplication with Chroma.
* Fix overriding the NeRF embedder dtype for Chroma Radiance
* Minor Chroma Radiance cleanups
* Move Chroma Radiance to its own directory in ldm
Minor code cleanups and tooltip improvements
* Fix Chroma Radiance embedder dtype overriding
* Remove Radiance dynamic nerf_embedder dtype override feature
* Unbork Radiance NeRF embedder init
* Remove Chroma Radiance image conversion and stub VAE nodes
Add a chroma_radiance option to the VAELoader builtin node which uses comfy.sd.PixelspaceConversionVAE
Add a PixelspaceConversionVAE to comfy.sd for converting BHWC 0..1 <-> BCHW -1..1
* Upload files for Chroma Implementation
* Remove trailing whitespace
* trim more trailing whitespace..oops
* remove unused imports
* Add supported_inference_dtypes
* Set min_length to 0 and remove attention_mask=True
* Set min_length to 1
* get_mdulations added from blepping and minor changes
* Add lora conversion if statement in lora.py
* Update supported_models.py
* update model_base.py
* add uptream commits
* set modelType.FLOW, will cause beta scheduler to work properly
* Adjust memory usage factor and remove unnecessary code
* fix mistake
* reduce code duplication
* remove unused imports
* refactor for upstream sync
* sync chroma-support with upstream via syncbranch patch
* Update sd.py
* Add Chroma as option for the OptimalStepsScheduler node