mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-09 05:54:24 +08:00
Compare commits
7 Commits
180e7738f7
...
108f5ac479
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
108f5ac479 | ||
|
|
fd271dedfd | ||
|
|
c3c6313fc7 | ||
|
|
85c4b4ae26 | ||
|
|
058f084371 | ||
|
|
ec7f65187d | ||
|
|
51119d3283 |
@ -320,6 +320,7 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
to = diffusers_keys[k]
|
||||
key_lora = k[:-len(".weight")]
|
||||
key_map["diffusion_model.{}".format(key_lora)] = to
|
||||
key_map["transformer.{}".format(key_lora)] = to
|
||||
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to
|
||||
|
||||
if isinstance(model, comfy.model_base.Kandinsky5):
|
||||
|
||||
@ -5,9 +5,9 @@ from typing import Type, TYPE_CHECKING
|
||||
from comfy_api.internal import ComfyAPIBase
|
||||
from comfy_api.internal.singleton import ProxiedSingleton
|
||||
from comfy_api.internal.async_to_sync import create_sync_class
|
||||
from comfy_api.latest._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
|
||||
from comfy_api.latest._input_impl import VideoFromFile, VideoFromComponents
|
||||
from comfy_api.latest._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
|
||||
from ._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
|
||||
from ._input_impl import VideoFromFile, VideoFromComponents
|
||||
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
|
||||
from . import _io_public as io
|
||||
from . import _ui_public as ui
|
||||
# from comfy_api.latest._resources import _RESOURCES as resources #noqa: F401
|
||||
@ -80,7 +80,7 @@ class ComfyExtension(ABC):
|
||||
async def on_load(self) -> None:
|
||||
"""
|
||||
Called when an extension is loaded.
|
||||
This should be used to initialize any global resources neeeded by the extension.
|
||||
This should be used to initialize any global resources needed by the extension.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
|
||||
@ -4,7 +4,7 @@ from fractions import Fraction
|
||||
from typing import Optional, Union, IO
|
||||
import io
|
||||
import av
|
||||
from comfy_api.util import VideoContainer, VideoCodec, VideoComponents
|
||||
from .._util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
class VideoInput(ABC):
|
||||
"""
|
||||
|
||||
@ -3,14 +3,14 @@ from av.container import InputContainer
|
||||
from av.subtitles.stream import SubtitleStream
|
||||
from fractions import Fraction
|
||||
from typing import Optional
|
||||
from comfy_api.latest._input import AudioInput, VideoInput
|
||||
from .._input import AudioInput, VideoInput
|
||||
import av
|
||||
import io
|
||||
import json
|
||||
import numpy as np
|
||||
import math
|
||||
import torch
|
||||
from comfy_api.latest._util import VideoContainer, VideoCodec, VideoComponents
|
||||
from .._util import VideoContainer, VideoCodec, VideoComponents
|
||||
|
||||
|
||||
def container_to_output_format(container_format: str | None) -> str | None:
|
||||
|
||||
@ -26,7 +26,7 @@ if TYPE_CHECKING:
|
||||
from comfy_api.input import VideoInput
|
||||
from comfy_api.internal import (_ComfyNodeInternal, _NodeOutputInternal, classproperty, copy_class, first_real_override, is_class,
|
||||
prune_dict, shallow_clone_class)
|
||||
from comfy_api.latest._resources import Resources, ResourcesLocal
|
||||
from ._resources import Resources, ResourcesLocal
|
||||
from comfy_execution.graph_utils import ExecutionBlocker
|
||||
from ._util import MESH, VOXEL
|
||||
|
||||
|
||||
@ -22,7 +22,7 @@ import folder_paths
|
||||
|
||||
# used for image preview
|
||||
from comfy.cli_args import args
|
||||
from comfy_api.latest._io import ComfyNode, FolderType, Image, _UIOutput
|
||||
from ._io import ComfyNode, FolderType, Image, _UIOutput
|
||||
|
||||
|
||||
class SavedResult(dict):
|
||||
|
||||
@ -3,7 +3,7 @@ from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
from fractions import Fraction
|
||||
from typing import Optional
|
||||
from comfy_api.latest._input import ImageInput, AudioInput
|
||||
from .._input import ImageInput, AudioInput
|
||||
|
||||
class VideoCodec(str, Enum):
|
||||
AUTO = "auto"
|
||||
|
||||
144
comfy_api_nodes/apis/bytedance_api.py
Normal file
144
comfy_api_nodes/apis/bytedance_api.py
Normal file
@ -0,0 +1,144 @@
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class Text2ImageTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
prompt: str = Field(...)
|
||||
response_format: str | None = Field("url")
|
||||
size: str | None = Field(None)
|
||||
seed: int | None = Field(0, ge=0, le=2147483647)
|
||||
guidance_scale: float | None = Field(..., ge=1.0, le=10.0)
|
||||
watermark: bool | None = Field(True)
|
||||
|
||||
|
||||
class Image2ImageTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
prompt: str = Field(...)
|
||||
response_format: str | None = Field("url")
|
||||
image: str = Field(..., description="Base64 encoded string or image URL")
|
||||
size: str | None = Field("adaptive")
|
||||
seed: int | None = Field(..., ge=0, le=2147483647)
|
||||
guidance_scale: float | None = Field(..., ge=1.0, le=10.0)
|
||||
watermark: bool | None = Field(True)
|
||||
|
||||
|
||||
class Seedream4Options(BaseModel):
|
||||
max_images: int = Field(15)
|
||||
|
||||
|
||||
class Seedream4TaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
prompt: str = Field(...)
|
||||
response_format: str = Field("url")
|
||||
image: list[str] | None = Field(None, description="Image URLs")
|
||||
size: str = Field(...)
|
||||
seed: int = Field(..., ge=0, le=2147483647)
|
||||
sequential_image_generation: str = Field("disabled")
|
||||
sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15))
|
||||
watermark: bool = Field(True)
|
||||
|
||||
|
||||
class ImageTaskCreationResponse(BaseModel):
|
||||
model: str = Field(...)
|
||||
created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.")
|
||||
data: list = Field([], description="Contains information about the generated image(s).")
|
||||
error: dict = Field({}, description="Contains `code` and `message` fields in case of error.")
|
||||
|
||||
|
||||
class TaskTextContent(BaseModel):
|
||||
type: str = Field("text")
|
||||
text: str = Field(...)
|
||||
|
||||
|
||||
class TaskImageContentUrl(BaseModel):
|
||||
url: str = Field(...)
|
||||
|
||||
|
||||
class TaskImageContent(BaseModel):
|
||||
type: str = Field("image_url")
|
||||
image_url: TaskImageContentUrl = Field(...)
|
||||
role: Literal["first_frame", "last_frame", "reference_image"] | None = Field(None)
|
||||
|
||||
|
||||
class Text2VideoTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
content: list[TaskTextContent] = Field(..., min_length=1)
|
||||
|
||||
|
||||
class Image2VideoTaskCreationRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
content: list[TaskTextContent | TaskImageContent] = Field(..., min_length=2)
|
||||
|
||||
|
||||
class TaskCreationResponse(BaseModel):
|
||||
id: str = Field(...)
|
||||
|
||||
|
||||
class TaskStatusError(BaseModel):
|
||||
code: str = Field(...)
|
||||
message: str = Field(...)
|
||||
|
||||
|
||||
class TaskStatusResult(BaseModel):
|
||||
video_url: str = Field(...)
|
||||
|
||||
|
||||
class TaskStatusResponse(BaseModel):
|
||||
id: str = Field(...)
|
||||
model: str = Field(...)
|
||||
status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...)
|
||||
error: TaskStatusError | None = Field(None)
|
||||
content: TaskStatusResult | None = Field(None)
|
||||
|
||||
|
||||
RECOMMENDED_PRESETS = [
|
||||
("1024x1024 (1:1)", 1024, 1024),
|
||||
("864x1152 (3:4)", 864, 1152),
|
||||
("1152x864 (4:3)", 1152, 864),
|
||||
("1280x720 (16:9)", 1280, 720),
|
||||
("720x1280 (9:16)", 720, 1280),
|
||||
("832x1248 (2:3)", 832, 1248),
|
||||
("1248x832 (3:2)", 1248, 832),
|
||||
("1512x648 (21:9)", 1512, 648),
|
||||
("2048x2048 (1:1)", 2048, 2048),
|
||||
("Custom", None, None),
|
||||
]
|
||||
|
||||
RECOMMENDED_PRESETS_SEEDREAM_4 = [
|
||||
("2048x2048 (1:1)", 2048, 2048),
|
||||
("2304x1728 (4:3)", 2304, 1728),
|
||||
("1728x2304 (3:4)", 1728, 2304),
|
||||
("2560x1440 (16:9)", 2560, 1440),
|
||||
("1440x2560 (9:16)", 1440, 2560),
|
||||
("2496x1664 (3:2)", 2496, 1664),
|
||||
("1664x2496 (2:3)", 1664, 2496),
|
||||
("3024x1296 (21:9)", 3024, 1296),
|
||||
("4096x4096 (1:1)", 4096, 4096),
|
||||
("Custom", None, None),
|
||||
]
|
||||
|
||||
# The time in this dictionary are given for 10 seconds duration.
|
||||
VIDEO_TASKS_EXECUTION_TIME = {
|
||||
"seedance-1-0-lite-t2v-250428": {
|
||||
"480p": 40,
|
||||
"720p": 60,
|
||||
"1080p": 90,
|
||||
},
|
||||
"seedance-1-0-lite-i2v-250428": {
|
||||
"480p": 40,
|
||||
"720p": 60,
|
||||
"1080p": 90,
|
||||
},
|
||||
"seedance-1-0-pro-250528": {
|
||||
"480p": 70,
|
||||
"720p": 85,
|
||||
"1080p": 115,
|
||||
},
|
||||
"seedance-1-0-pro-fast-251015": {
|
||||
"480p": 50,
|
||||
"720p": 65,
|
||||
"1080p": 100,
|
||||
},
|
||||
}
|
||||
@ -84,15 +84,7 @@ class GeminiSystemInstructionContent(BaseModel):
|
||||
description="A list of ordered parts that make up a single message. "
|
||||
"Different parts may have different IANA MIME types.",
|
||||
)
|
||||
role: GeminiRole = Field(
|
||||
...,
|
||||
description="The identity of the entity that creates the message. "
|
||||
"The following values are supported: "
|
||||
"user: This indicates that the message is sent by a real person, typically a user-generated message. "
|
||||
"model: This indicates that the message is generated by the model. "
|
||||
"The model value is used to insert messages from model into the conversation during multi-turn conversations. "
|
||||
"For non-multi-turn conversations, this field can be left blank or unset.",
|
||||
)
|
||||
role: GeminiRole | None = Field(..., description="The role field of systemInstruction may be ignored.")
|
||||
|
||||
|
||||
class GeminiFunctionDeclaration(BaseModel):
|
||||
|
||||
@ -85,7 +85,7 @@ class Response1(BaseModel):
|
||||
raiMediaFilteredReasons: Optional[list[str]] = Field(
|
||||
None, description='Reasons why media was filtered by responsible AI policies'
|
||||
)
|
||||
videos: Optional[list[Video]] = None
|
||||
videos: Optional[list[Video]] = Field(None)
|
||||
|
||||
|
||||
class VeoGenVidPollResponse(BaseModel):
|
||||
|
||||
@ -1,13 +1,27 @@
|
||||
import logging
|
||||
import math
|
||||
from enum import Enum
|
||||
from typing import Literal, Optional, Union
|
||||
|
||||
import torch
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api_nodes.apis.bytedance_api import (
|
||||
RECOMMENDED_PRESETS,
|
||||
RECOMMENDED_PRESETS_SEEDREAM_4,
|
||||
VIDEO_TASKS_EXECUTION_TIME,
|
||||
Image2ImageTaskCreationRequest,
|
||||
Image2VideoTaskCreationRequest,
|
||||
ImageTaskCreationResponse,
|
||||
Seedream4Options,
|
||||
Seedream4TaskCreationRequest,
|
||||
TaskCreationResponse,
|
||||
TaskImageContent,
|
||||
TaskImageContentUrl,
|
||||
TaskStatusResponse,
|
||||
TaskTextContent,
|
||||
Text2ImageTaskCreationRequest,
|
||||
Text2VideoTaskCreationRequest,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_image_tensor,
|
||||
@ -29,162 +43,6 @@ BYTEPLUS_TASK_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks"
|
||||
BYTEPLUS_TASK_STATUS_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" # + /{task_id}
|
||||
|
||||
|
||||
class Text2ImageModelName(str, Enum):
|
||||
seedream_3 = "seedream-3-0-t2i-250415"
|
||||
|
||||
|
||||
class Image2ImageModelName(str, Enum):
|
||||
seededit_3 = "seededit-3-0-i2i-250628"
|
||||
|
||||
|
||||
class Text2VideoModelName(str, Enum):
|
||||
seedance_1_pro = "seedance-1-0-pro-250528"
|
||||
seedance_1_lite = "seedance-1-0-lite-t2v-250428"
|
||||
|
||||
|
||||
class Image2VideoModelName(str, Enum):
|
||||
"""note(August 31): Pro model only supports FirstFrame: https://docs.byteplus.com/en/docs/ModelArk/1520757"""
|
||||
|
||||
seedance_1_pro = "seedance-1-0-pro-250528"
|
||||
seedance_1_lite = "seedance-1-0-lite-i2v-250428"
|
||||
|
||||
|
||||
class Text2ImageTaskCreationRequest(BaseModel):
|
||||
model: Text2ImageModelName = Text2ImageModelName.seedream_3
|
||||
prompt: str = Field(...)
|
||||
response_format: Optional[str] = Field("url")
|
||||
size: Optional[str] = Field(None)
|
||||
seed: Optional[int] = Field(0, ge=0, le=2147483647)
|
||||
guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0)
|
||||
watermark: Optional[bool] = Field(True)
|
||||
|
||||
|
||||
class Image2ImageTaskCreationRequest(BaseModel):
|
||||
model: Image2ImageModelName = Image2ImageModelName.seededit_3
|
||||
prompt: str = Field(...)
|
||||
response_format: Optional[str] = Field("url")
|
||||
image: str = Field(..., description="Base64 encoded string or image URL")
|
||||
size: Optional[str] = Field("adaptive")
|
||||
seed: Optional[int] = Field(..., ge=0, le=2147483647)
|
||||
guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0)
|
||||
watermark: Optional[bool] = Field(True)
|
||||
|
||||
|
||||
class Seedream4Options(BaseModel):
|
||||
max_images: int = Field(15)
|
||||
|
||||
|
||||
class Seedream4TaskCreationRequest(BaseModel):
|
||||
model: str = Field("seedream-4-0-250828")
|
||||
prompt: str = Field(...)
|
||||
response_format: str = Field("url")
|
||||
image: Optional[list[str]] = Field(None, description="Image URLs")
|
||||
size: str = Field(...)
|
||||
seed: int = Field(..., ge=0, le=2147483647)
|
||||
sequential_image_generation: str = Field("disabled")
|
||||
sequential_image_generation_options: Seedream4Options = Field(Seedream4Options(max_images=15))
|
||||
watermark: bool = Field(True)
|
||||
|
||||
|
||||
class ImageTaskCreationResponse(BaseModel):
|
||||
model: str = Field(...)
|
||||
created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.")
|
||||
data: list = Field([], description="Contains information about the generated image(s).")
|
||||
error: dict = Field({}, description="Contains `code` and `message` fields in case of error.")
|
||||
|
||||
|
||||
class TaskTextContent(BaseModel):
|
||||
type: str = Field("text")
|
||||
text: str = Field(...)
|
||||
|
||||
|
||||
class TaskImageContentUrl(BaseModel):
|
||||
url: str = Field(...)
|
||||
|
||||
|
||||
class TaskImageContent(BaseModel):
|
||||
type: str = Field("image_url")
|
||||
image_url: TaskImageContentUrl = Field(...)
|
||||
role: Optional[Literal["first_frame", "last_frame", "reference_image"]] = Field(None)
|
||||
|
||||
|
||||
class Text2VideoTaskCreationRequest(BaseModel):
|
||||
model: Text2VideoModelName = Text2VideoModelName.seedance_1_pro
|
||||
content: list[TaskTextContent] = Field(..., min_length=1)
|
||||
|
||||
|
||||
class Image2VideoTaskCreationRequest(BaseModel):
|
||||
model: Image2VideoModelName = Image2VideoModelName.seedance_1_pro
|
||||
content: list[Union[TaskTextContent, TaskImageContent]] = Field(..., min_length=2)
|
||||
|
||||
|
||||
class TaskCreationResponse(BaseModel):
|
||||
id: str = Field(...)
|
||||
|
||||
|
||||
class TaskStatusError(BaseModel):
|
||||
code: str = Field(...)
|
||||
message: str = Field(...)
|
||||
|
||||
|
||||
class TaskStatusResult(BaseModel):
|
||||
video_url: str = Field(...)
|
||||
|
||||
|
||||
class TaskStatusResponse(BaseModel):
|
||||
id: str = Field(...)
|
||||
model: str = Field(...)
|
||||
status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...)
|
||||
error: Optional[TaskStatusError] = Field(None)
|
||||
content: Optional[TaskStatusResult] = Field(None)
|
||||
|
||||
|
||||
RECOMMENDED_PRESETS = [
|
||||
("1024x1024 (1:1)", 1024, 1024),
|
||||
("864x1152 (3:4)", 864, 1152),
|
||||
("1152x864 (4:3)", 1152, 864),
|
||||
("1280x720 (16:9)", 1280, 720),
|
||||
("720x1280 (9:16)", 720, 1280),
|
||||
("832x1248 (2:3)", 832, 1248),
|
||||
("1248x832 (3:2)", 1248, 832),
|
||||
("1512x648 (21:9)", 1512, 648),
|
||||
("2048x2048 (1:1)", 2048, 2048),
|
||||
("Custom", None, None),
|
||||
]
|
||||
|
||||
RECOMMENDED_PRESETS_SEEDREAM_4 = [
|
||||
("2048x2048 (1:1)", 2048, 2048),
|
||||
("2304x1728 (4:3)", 2304, 1728),
|
||||
("1728x2304 (3:4)", 1728, 2304),
|
||||
("2560x1440 (16:9)", 2560, 1440),
|
||||
("1440x2560 (9:16)", 1440, 2560),
|
||||
("2496x1664 (3:2)", 2496, 1664),
|
||||
("1664x2496 (2:3)", 1664, 2496),
|
||||
("3024x1296 (21:9)", 3024, 1296),
|
||||
("4096x4096 (1:1)", 4096, 4096),
|
||||
("Custom", None, None),
|
||||
]
|
||||
|
||||
# The time in this dictionary are given for 10 seconds duration.
|
||||
VIDEO_TASKS_EXECUTION_TIME = {
|
||||
"seedance-1-0-lite-t2v-250428": {
|
||||
"480p": 40,
|
||||
"720p": 60,
|
||||
"1080p": 90,
|
||||
},
|
||||
"seedance-1-0-lite-i2v-250428": {
|
||||
"480p": 40,
|
||||
"720p": 60,
|
||||
"1080p": 90,
|
||||
},
|
||||
"seedance-1-0-pro-250528": {
|
||||
"480p": 70,
|
||||
"720p": 85,
|
||||
"1080p": 115,
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def get_image_url_from_response(response: ImageTaskCreationResponse) -> str:
|
||||
if response.error:
|
||||
error_msg = f"ByteDance request failed. Code: {response.error['code']}, message: {response.error['message']}"
|
||||
@ -194,13 +52,6 @@ def get_image_url_from_response(response: ImageTaskCreationResponse) -> str:
|
||||
return response.data[0]["url"]
|
||||
|
||||
|
||||
def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
|
||||
"""Returns the video URL from the task status response if it exists."""
|
||||
if hasattr(response, "content") and response.content:
|
||||
return response.content.video_url
|
||||
return None
|
||||
|
||||
|
||||
class ByteDanceImageNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
@ -211,12 +62,7 @@ class ByteDanceImageNode(IO.ComfyNode):
|
||||
category="api node/image/ByteDance",
|
||||
description="Generate images using ByteDance models via api based on prompt",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=Text2ImageModelName,
|
||||
default=Text2ImageModelName.seedream_3,
|
||||
tooltip="Model name",
|
||||
),
|
||||
IO.Combo.Input("model", options=["seedream-3-0-t2i-250415"]),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
@ -335,12 +181,7 @@ class ByteDanceImageEditNode(IO.ComfyNode):
|
||||
category="api node/image/ByteDance",
|
||||
description="Edit images using ByteDance models via api based on prompt",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=Image2ImageModelName,
|
||||
default=Image2ImageModelName.seededit_3,
|
||||
tooltip="Model name",
|
||||
),
|
||||
IO.Combo.Input("model", options=["seededit-3-0-i2i-250628"]),
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
tooltip="The base image to edit",
|
||||
@ -394,7 +235,7 @@ class ByteDanceImageEditNode(IO.ComfyNode):
|
||||
async def execute(
|
||||
cls,
|
||||
model: str,
|
||||
image: torch.Tensor,
|
||||
image: Input.Image,
|
||||
prompt: str,
|
||||
seed: int,
|
||||
guidance_scale: float,
|
||||
@ -434,7 +275,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=["seedream-4-0-250828"],
|
||||
options=["seedream-4-5-251128", "seedream-4-0-250828"],
|
||||
tooltip="Model name",
|
||||
),
|
||||
IO.String.Input(
|
||||
@ -459,7 +300,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
|
||||
default=2048,
|
||||
min=1024,
|
||||
max=4096,
|
||||
step=64,
|
||||
step=8,
|
||||
tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`",
|
||||
optional=True,
|
||||
),
|
||||
@ -468,7 +309,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
|
||||
default=2048,
|
||||
min=1024,
|
||||
max=4096,
|
||||
step=64,
|
||||
step=8,
|
||||
tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`",
|
||||
optional=True,
|
||||
),
|
||||
@ -532,7 +373,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
image: torch.Tensor = None,
|
||||
image: Input.Image | None = None,
|
||||
size_preset: str = RECOMMENDED_PRESETS_SEEDREAM_4[0][0],
|
||||
width: int = 2048,
|
||||
height: int = 2048,
|
||||
@ -555,6 +396,18 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
|
||||
raise ValueError(
|
||||
f"Custom size out of range: {w}x{h}. " "Both width and height must be between 1024 and 4096 pixels."
|
||||
)
|
||||
out_num_pixels = w * h
|
||||
mp_provided = out_num_pixels / 1_000_000.0
|
||||
if "seedream-4-5" in model and out_num_pixels < 3686400:
|
||||
raise ValueError(
|
||||
f"Minimum image resolution that Seedream 4.5 can generate is 3.68MP, "
|
||||
f"but {mp_provided:.2f}MP provided."
|
||||
)
|
||||
if "seedream-4-0" in model and out_num_pixels < 921600:
|
||||
raise ValueError(
|
||||
f"Minimum image resolution that the selected model can generate is 0.92MP, "
|
||||
f"but {mp_provided:.2f}MP provided."
|
||||
)
|
||||
n_input_images = get_number_of_images(image) if image is not None else 0
|
||||
if n_input_images > 10:
|
||||
raise ValueError(f"Maximum of 10 reference images are supported, but {n_input_images} received.")
|
||||
@ -607,9 +460,8 @@ class ByteDanceTextToVideoNode(IO.ComfyNode):
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=Text2VideoModelName,
|
||||
default=Text2VideoModelName.seedance_1_pro,
|
||||
tooltip="Model name",
|
||||
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"],
|
||||
default="seedance-1-0-pro-fast-251015",
|
||||
),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -714,9 +566,8 @@ class ByteDanceImageToVideoNode(IO.ComfyNode):
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=Image2VideoModelName,
|
||||
default=Image2VideoModelName.seedance_1_pro,
|
||||
tooltip="Model name",
|
||||
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-t2v-250428", "seedance-1-0-pro-fast-251015"],
|
||||
default="seedance-1-0-pro-fast-251015",
|
||||
),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -787,7 +638,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode):
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
image: torch.Tensor,
|
||||
image: Input.Image,
|
||||
resolution: str,
|
||||
aspect_ratio: str,
|
||||
duration: int,
|
||||
@ -833,9 +684,8 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode):
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=[model.value for model in Image2VideoModelName],
|
||||
default=Image2VideoModelName.seedance_1_lite.value,
|
||||
tooltip="Model name",
|
||||
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"],
|
||||
default="seedance-1-0-lite-i2v-250428",
|
||||
),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -910,8 +760,8 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode):
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
first_frame: torch.Tensor,
|
||||
last_frame: torch.Tensor,
|
||||
first_frame: Input.Image,
|
||||
last_frame: Input.Image,
|
||||
resolution: str,
|
||||
aspect_ratio: str,
|
||||
duration: int,
|
||||
@ -968,9 +818,8 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
options=[Image2VideoModelName.seedance_1_lite.value],
|
||||
default=Image2VideoModelName.seedance_1_lite.value,
|
||||
tooltip="Model name",
|
||||
options=["seedance-1-0-pro-250528", "seedance-1-0-lite-i2v-250428"],
|
||||
default="seedance-1-0-lite-i2v-250428",
|
||||
),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@ -1034,7 +883,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
|
||||
cls,
|
||||
model: str,
|
||||
prompt: str,
|
||||
images: torch.Tensor,
|
||||
images: Input.Image,
|
||||
resolution: str,
|
||||
aspect_ratio: str,
|
||||
duration: int,
|
||||
@ -1069,8 +918,8 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
|
||||
|
||||
async def process_video_task(
|
||||
cls: type[IO.ComfyNode],
|
||||
payload: Union[Text2VideoTaskCreationRequest, Image2VideoTaskCreationRequest],
|
||||
estimated_duration: Optional[int],
|
||||
payload: Text2VideoTaskCreationRequest | Image2VideoTaskCreationRequest,
|
||||
estimated_duration: int | None,
|
||||
) -> IO.NodeOutput:
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
@ -1085,7 +934,7 @@ async def process_video_task(
|
||||
estimated_duration=estimated_duration,
|
||||
response_model=TaskStatusResponse,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(get_video_url_from_task_status(response)))
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.content.video_url))
|
||||
|
||||
|
||||
def raise_if_text_params(prompt: str, text_params: list[str]) -> None:
|
||||
|
||||
@ -13,8 +13,7 @@ import torch
|
||||
from typing_extensions import override
|
||||
|
||||
import folder_paths
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api.util import VideoCodec, VideoContainer
|
||||
from comfy_api.latest import IO, ComfyExtension, Input, Types
|
||||
from comfy_api_nodes.apis.gemini_api import (
|
||||
GeminiContent,
|
||||
GeminiFileData,
|
||||
@ -27,6 +26,8 @@ from comfy_api_nodes.apis.gemini_api import (
|
||||
GeminiMimeType,
|
||||
GeminiPart,
|
||||
GeminiRole,
|
||||
GeminiSystemInstructionContent,
|
||||
GeminiTextPart,
|
||||
Modality,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
@ -43,6 +44,14 @@ from comfy_api_nodes.util import (
|
||||
|
||||
GEMINI_BASE_ENDPOINT = "/proxy/vertexai/gemini"
|
||||
GEMINI_MAX_INPUT_FILE_SIZE = 20 * 1024 * 1024 # 20 MB
|
||||
GEMINI_IMAGE_SYS_PROMPT = (
|
||||
"You are an expert image-generation engine. You must ALWAYS produce an image.\n"
|
||||
"Interpret all user input—regardless of "
|
||||
"format, intent, or abstraction—as literal visual directives for image composition.\n"
|
||||
"If a prompt is conversational or lacks specific visual details, "
|
||||
"you must creatively invent a concrete visual scenario that depicts the concept.\n"
|
||||
"Prioritize generating the visual representation above any text, formatting, or conversational requests."
|
||||
)
|
||||
|
||||
|
||||
class GeminiModel(str, Enum):
|
||||
@ -68,7 +77,7 @@ class GeminiImageModel(str, Enum):
|
||||
|
||||
async def create_image_parts(
|
||||
cls: type[IO.ComfyNode],
|
||||
images: torch.Tensor,
|
||||
images: Input.Image,
|
||||
image_limit: int = 0,
|
||||
) -> list[GeminiPart]:
|
||||
image_parts: list[GeminiPart] = []
|
||||
@ -154,8 +163,8 @@ def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
|
||||
return "\n".join([part.text for part in parts])
|
||||
|
||||
|
||||
def get_image_from_response(response: GeminiGenerateContentResponse) -> torch.Tensor:
|
||||
image_tensors: list[torch.Tensor] = []
|
||||
def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image:
|
||||
image_tensors: list[Input.Image] = []
|
||||
parts = get_parts_by_type(response, "image/png")
|
||||
for part in parts:
|
||||
image_data = base64.b64decode(part.inlineData.data)
|
||||
@ -277,6 +286,13 @@ class GeminiNode(IO.ComfyNode):
|
||||
tooltip="Optional file(s) to use as context for the model. "
|
||||
"Accepts inputs from the Gemini Generate Content Input Files node.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"system_prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
optional=True,
|
||||
tooltip="Foundational instructions that dictate an AI's behavior.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.String.Output(),
|
||||
@ -293,7 +309,9 @@ class GeminiNode(IO.ComfyNode):
|
||||
def create_video_parts(cls, video_input: Input.Video) -> list[GeminiPart]:
|
||||
"""Convert video input to Gemini API compatible parts."""
|
||||
|
||||
base_64_string = video_to_base64_string(video_input, container_format=VideoContainer.MP4, codec=VideoCodec.H264)
|
||||
base_64_string = video_to_base64_string(
|
||||
video_input, container_format=Types.VideoContainer.MP4, codec=Types.VideoCodec.H264
|
||||
)
|
||||
return [
|
||||
GeminiPart(
|
||||
inlineData=GeminiInlineData(
|
||||
@ -343,10 +361,11 @@ class GeminiNode(IO.ComfyNode):
|
||||
prompt: str,
|
||||
model: str,
|
||||
seed: int,
|
||||
images: torch.Tensor | None = None,
|
||||
images: Input.Image | None = None,
|
||||
audio: Input.Audio | None = None,
|
||||
video: Input.Video | None = None,
|
||||
files: list[GeminiPart] | None = None,
|
||||
system_prompt: str = "",
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False)
|
||||
|
||||
@ -363,7 +382,10 @@ class GeminiNode(IO.ComfyNode):
|
||||
if files is not None:
|
||||
parts.extend(files)
|
||||
|
||||
# Create response
|
||||
gemini_system_prompt = None
|
||||
if system_prompt:
|
||||
gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None)
|
||||
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
|
||||
@ -373,7 +395,8 @@ class GeminiNode(IO.ComfyNode):
|
||||
role=GeminiRole.user,
|
||||
parts=parts,
|
||||
)
|
||||
]
|
||||
],
|
||||
systemInstruction=gemini_system_prompt,
|
||||
),
|
||||
response_model=GeminiGenerateContentResponse,
|
||||
price_extractor=calculate_tokens_price,
|
||||
@ -523,6 +546,13 @@ class GeminiImage(IO.ComfyNode):
|
||||
"'IMAGE+TEXT' to return both the generated image and a text response.",
|
||||
optional=True,
|
||||
),
|
||||
IO.String.Input(
|
||||
"system_prompt",
|
||||
multiline=True,
|
||||
default=GEMINI_IMAGE_SYS_PROMPT,
|
||||
optional=True,
|
||||
tooltip="Foundational instructions that dictate an AI's behavior.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
@ -542,10 +572,11 @@ class GeminiImage(IO.ComfyNode):
|
||||
prompt: str,
|
||||
model: str,
|
||||
seed: int,
|
||||
images: torch.Tensor | None = None,
|
||||
images: Input.Image | None = None,
|
||||
files: list[GeminiPart] | None = None,
|
||||
aspect_ratio: str = "auto",
|
||||
response_modalities: str = "IMAGE+TEXT",
|
||||
system_prompt: str = "",
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=True, min_length=1)
|
||||
parts: list[GeminiPart] = [GeminiPart(text=prompt)]
|
||||
@ -559,6 +590,10 @@ class GeminiImage(IO.ComfyNode):
|
||||
if files is not None:
|
||||
parts.extend(files)
|
||||
|
||||
gemini_system_prompt = None
|
||||
if system_prompt:
|
||||
gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None)
|
||||
|
||||
response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
|
||||
@ -570,6 +605,7 @@ class GeminiImage(IO.ComfyNode):
|
||||
responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]),
|
||||
imageConfig=None if aspect_ratio == "auto" else image_config,
|
||||
),
|
||||
systemInstruction=gemini_system_prompt,
|
||||
),
|
||||
response_model=GeminiGenerateContentResponse,
|
||||
price_extractor=calculate_tokens_price,
|
||||
@ -640,6 +676,13 @@ class GeminiImage2(IO.ComfyNode):
|
||||
tooltip="Optional file(s) to use as context for the model. "
|
||||
"Accepts inputs from the Gemini Generate Content Input Files node.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"system_prompt",
|
||||
multiline=True,
|
||||
default=GEMINI_IMAGE_SYS_PROMPT,
|
||||
optional=True,
|
||||
tooltip="Foundational instructions that dictate an AI's behavior.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
@ -662,8 +705,9 @@ class GeminiImage2(IO.ComfyNode):
|
||||
aspect_ratio: str,
|
||||
resolution: str,
|
||||
response_modalities: str,
|
||||
images: torch.Tensor | None = None,
|
||||
images: Input.Image | None = None,
|
||||
files: list[GeminiPart] | None = None,
|
||||
system_prompt: str = "",
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=True, min_length=1)
|
||||
|
||||
@ -679,6 +723,10 @@ class GeminiImage2(IO.ComfyNode):
|
||||
if aspect_ratio != "auto":
|
||||
image_config.aspectRatio = aspect_ratio
|
||||
|
||||
gemini_system_prompt = None
|
||||
if system_prompt:
|
||||
gemini_system_prompt = GeminiSystemInstructionContent(parts=[GeminiTextPart(text=system_prompt)], role=None)
|
||||
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"{GEMINI_BASE_ENDPOINT}/{model}", method="POST"),
|
||||
@ -690,6 +738,7 @@ class GeminiImage2(IO.ComfyNode):
|
||||
responseModalities=(["IMAGE"] if response_modalities == "IMAGE" else ["TEXT", "IMAGE"]),
|
||||
imageConfig=image_config,
|
||||
),
|
||||
systemInstruction=gemini_system_prompt,
|
||||
),
|
||||
response_model=GeminiGenerateContentResponse,
|
||||
price_extractor=calculate_tokens_price,
|
||||
|
||||
@ -1,12 +1,9 @@
|
||||
from io import BytesIO
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from pydantic import BaseModel, Field
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.input_impl import VideoFromFile
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api.latest import IO, ComfyExtension, Input, InputImpl
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
get_number_of_images,
|
||||
@ -26,9 +23,9 @@ class ExecuteTaskRequest(BaseModel):
|
||||
model: str = Field(...)
|
||||
duration: int = Field(...)
|
||||
resolution: str = Field(...)
|
||||
fps: Optional[int] = Field(25)
|
||||
generate_audio: Optional[bool] = Field(True)
|
||||
image_uri: Optional[str] = Field(None)
|
||||
fps: int | None = Field(25)
|
||||
generate_audio: bool | None = Field(True)
|
||||
image_uri: str | None = Field(None)
|
||||
|
||||
|
||||
class TextToVideoNode(IO.ComfyNode):
|
||||
@ -103,7 +100,7 @@ class TextToVideoNode(IO.ComfyNode):
|
||||
as_binary=True,
|
||||
max_retries=1,
|
||||
)
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(response)))
|
||||
return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(response)))
|
||||
|
||||
|
||||
class ImageToVideoNode(IO.ComfyNode):
|
||||
@ -153,7 +150,7 @@ class ImageToVideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: torch.Tensor,
|
||||
image: Input.Image,
|
||||
model: str,
|
||||
prompt: str,
|
||||
duration: int,
|
||||
@ -183,7 +180,7 @@ class ImageToVideoNode(IO.ComfyNode):
|
||||
as_binary=True,
|
||||
max_retries=1,
|
||||
)
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(response)))
|
||||
return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(response)))
|
||||
|
||||
|
||||
class LtxvApiExtension(ComfyExtension):
|
||||
|
||||
@ -1,11 +1,8 @@
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.input import VideoInput
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api_nodes.apis import (
|
||||
MoonvalleyPromptResponse,
|
||||
MoonvalleyTextToVideoInferenceParams,
|
||||
@ -61,7 +58,7 @@ def validate_task_creation_response(response) -> None:
|
||||
raise RuntimeError(error_msg)
|
||||
|
||||
|
||||
def validate_video_to_video_input(video: VideoInput) -> VideoInput:
|
||||
def validate_video_to_video_input(video: Input.Video) -> Input.Video:
|
||||
"""
|
||||
Validates and processes video input for Moonvalley Video-to-Video generation.
|
||||
|
||||
@ -82,7 +79,7 @@ def validate_video_to_video_input(video: VideoInput) -> VideoInput:
|
||||
return _validate_and_trim_duration(video)
|
||||
|
||||
|
||||
def _get_video_dimensions(video: VideoInput) -> tuple[int, int]:
|
||||
def _get_video_dimensions(video: Input.Video) -> tuple[int, int]:
|
||||
"""Extracts video dimensions with error handling."""
|
||||
try:
|
||||
return video.get_dimensions()
|
||||
@ -106,7 +103,7 @@ def _validate_video_dimensions(width: int, height: int) -> None:
|
||||
raise ValueError(f"Resolution {width}x{height} not supported. Supported: {supported_list}")
|
||||
|
||||
|
||||
def _validate_and_trim_duration(video: VideoInput) -> VideoInput:
|
||||
def _validate_and_trim_duration(video: Input.Video) -> Input.Video:
|
||||
"""Validates video duration and trims to 5 seconds if needed."""
|
||||
duration = video.get_duration()
|
||||
_validate_minimum_duration(duration)
|
||||
@ -119,7 +116,7 @@ def _validate_minimum_duration(duration: float) -> None:
|
||||
raise ValueError("Input video must be at least 5 seconds long.")
|
||||
|
||||
|
||||
def _trim_if_too_long(video: VideoInput, duration: float) -> VideoInput:
|
||||
def _trim_if_too_long(video: Input.Video, duration: float) -> Input.Video:
|
||||
"""Trims video to 5 seconds if longer."""
|
||||
if duration > 5:
|
||||
return trim_video(video, 5)
|
||||
@ -241,7 +238,7 @@ class MoonvalleyImg2VideoNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: torch.Tensor,
|
||||
image: Input.Image,
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
resolution: str,
|
||||
@ -362,9 +359,9 @@ class MoonvalleyVideo2VideoNode(IO.ComfyNode):
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
seed: int,
|
||||
video: Optional[VideoInput] = None,
|
||||
video: Input.Video | None = None,
|
||||
control_type: str = "Motion Transfer",
|
||||
motion_intensity: Optional[int] = 100,
|
||||
motion_intensity: int | None = 100,
|
||||
steps=33,
|
||||
prompt_adherence=4.5,
|
||||
) -> IO.NodeOutput:
|
||||
|
||||
@ -11,12 +11,11 @@ User Guides:
|
||||
|
||||
"""
|
||||
|
||||
from typing import Union, Optional
|
||||
from typing_extensions import override
|
||||
from enum import Enum
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension, Input, InputImpl
|
||||
from comfy_api_nodes.apis import (
|
||||
RunwayImageToVideoRequest,
|
||||
RunwayImageToVideoResponse,
|
||||
@ -44,8 +43,6 @@ from comfy_api_nodes.util import (
|
||||
sync_op,
|
||||
poll_op,
|
||||
)
|
||||
from comfy_api.input_impl import VideoFromFile
|
||||
from comfy_api.latest import ComfyExtension, IO
|
||||
|
||||
PATH_IMAGE_TO_VIDEO = "/proxy/runway/image_to_video"
|
||||
PATH_TEXT_TO_IMAGE = "/proxy/runway/text_to_image"
|
||||
@ -80,7 +77,7 @@ class RunwayGen3aAspectRatio(str, Enum):
|
||||
field_1280_768 = "1280:768"
|
||||
|
||||
|
||||
def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
|
||||
def get_video_url_from_task_status(response: TaskStatusResponse) -> str | None:
|
||||
"""Returns the video URL from the task status response if it exists."""
|
||||
if hasattr(response, "output") and len(response.output) > 0:
|
||||
return response.output[0]
|
||||
@ -89,13 +86,13 @@ def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, N
|
||||
|
||||
def extract_progress_from_task_status(
|
||||
response: TaskStatusResponse,
|
||||
) -> Union[float, None]:
|
||||
) -> float | None:
|
||||
if hasattr(response, "progress") and response.progress is not None:
|
||||
return response.progress * 100
|
||||
return None
|
||||
|
||||
|
||||
def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
|
||||
def get_image_url_from_task_status(response: TaskStatusResponse) -> str | None:
|
||||
"""Returns the image URL from the task status response if it exists."""
|
||||
if hasattr(response, "output") and len(response.output) > 0:
|
||||
return response.output[0]
|
||||
@ -103,7 +100,7 @@ def get_image_url_from_task_status(response: TaskStatusResponse) -> Union[str, N
|
||||
|
||||
|
||||
async def get_response(
|
||||
cls: type[IO.ComfyNode], task_id: str, estimated_duration: Optional[int] = None
|
||||
cls: type[IO.ComfyNode], task_id: str, estimated_duration: int | None = None
|
||||
) -> TaskStatusResponse:
|
||||
"""Poll the task status until it is finished then get the response."""
|
||||
return await poll_op(
|
||||
@ -119,8 +116,8 @@ async def get_response(
|
||||
async def generate_video(
|
||||
cls: type[IO.ComfyNode],
|
||||
request: RunwayImageToVideoRequest,
|
||||
estimated_duration: Optional[int] = None,
|
||||
) -> VideoFromFile:
|
||||
estimated_duration: int | None = None,
|
||||
) -> InputImpl.VideoFromFile:
|
||||
initial_response = await sync_op(
|
||||
cls,
|
||||
endpoint=ApiEndpoint(path=PATH_IMAGE_TO_VIDEO, method="POST"),
|
||||
@ -193,7 +190,7 @@ class RunwayImageToVideoNodeGen3a(IO.ComfyNode):
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
start_frame: torch.Tensor,
|
||||
start_frame: Input.Image,
|
||||
duration: str,
|
||||
ratio: str,
|
||||
seed: int,
|
||||
@ -283,7 +280,7 @@ class RunwayImageToVideoNodeGen4(IO.ComfyNode):
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
start_frame: torch.Tensor,
|
||||
start_frame: Input.Image,
|
||||
duration: str,
|
||||
ratio: str,
|
||||
seed: int,
|
||||
@ -381,8 +378,8 @@ class RunwayFirstLastFrameNode(IO.ComfyNode):
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
start_frame: torch.Tensor,
|
||||
end_frame: torch.Tensor,
|
||||
start_frame: Input.Image,
|
||||
end_frame: Input.Image,
|
||||
duration: str,
|
||||
ratio: str,
|
||||
seed: int,
|
||||
@ -467,7 +464,7 @@ class RunwayTextToImageNode(IO.ComfyNode):
|
||||
cls,
|
||||
prompt: str,
|
||||
ratio: str,
|
||||
reference_image: Optional[torch.Tensor] = None,
|
||||
reference_image: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, min_length=1)
|
||||
|
||||
|
||||
@ -1,11 +1,9 @@
|
||||
import base64
|
||||
from io import BytesIO
|
||||
|
||||
import torch
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.input_impl.video_types import VideoFromFile
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api.latest import IO, ComfyExtension, Input, InputImpl
|
||||
from comfy_api_nodes.apis.veo_api import (
|
||||
VeoGenVidPollRequest,
|
||||
VeoGenVidPollResponse,
|
||||
@ -232,7 +230,7 @@ class VeoVideoGenerationNode(IO.ComfyNode):
|
||||
|
||||
# Check if video is provided as base64 or URL
|
||||
if hasattr(video, "bytesBase64Encoded") and video.bytesBase64Encoded:
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded))))
|
||||
return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded))))
|
||||
|
||||
if hasattr(video, "gcsUri") and video.gcsUri:
|
||||
return IO.NodeOutput(await download_url_to_video_output(video.gcsUri))
|
||||
@ -431,8 +429,8 @@ class Veo3FirstLastFrameNode(IO.ComfyNode):
|
||||
aspect_ratio: str,
|
||||
duration: int,
|
||||
seed: int,
|
||||
first_frame: torch.Tensor,
|
||||
last_frame: torch.Tensor,
|
||||
first_frame: Input.Image,
|
||||
last_frame: Input.Image,
|
||||
model: str,
|
||||
generate_audio: bool,
|
||||
):
|
||||
@ -493,7 +491,7 @@ class Veo3FirstLastFrameNode(IO.ComfyNode):
|
||||
if response.videos:
|
||||
video = response.videos[0]
|
||||
if video.bytesBase64Encoded:
|
||||
return IO.NodeOutput(VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded))))
|
||||
return IO.NodeOutput(InputImpl.VideoFromFile(BytesIO(base64.b64decode(video.bytesBase64Encoded))))
|
||||
if video.gcsUri:
|
||||
return IO.NodeOutput(await download_url_to_video_output(video.gcsUri))
|
||||
raise Exception("Video returned but no data or URL was provided")
|
||||
|
||||
@ -8,10 +8,7 @@ import json
|
||||
from typing import Optional
|
||||
from typing_extensions import override
|
||||
from fractions import Fraction
|
||||
from comfy_api.input import AudioInput, ImageInput, VideoInput
|
||||
from comfy_api.input_impl import VideoFromComponents, VideoFromFile
|
||||
from comfy_api.util import VideoCodec, VideoComponents, VideoContainer
|
||||
from comfy_api.latest import ComfyExtension, io, ui
|
||||
from comfy_api.latest import ComfyExtension, io, ui, Input, InputImpl, Types
|
||||
from comfy.cli_args import args
|
||||
|
||||
class SaveWEBM(io.ComfyNode):
|
||||
@ -28,7 +25,6 @@ class SaveWEBM(io.ComfyNode):
|
||||
io.Float.Input("fps", default=24.0, min=0.01, max=1000.0, step=0.01),
|
||||
io.Float.Input("crf", default=32.0, min=0, max=63.0, step=1, tooltip="Higher crf means lower quality with a smaller file size, lower crf means higher quality higher filesize."),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
@ -79,16 +75,15 @@ class SaveVideo(io.ComfyNode):
|
||||
inputs=[
|
||||
io.Video.Input("video", tooltip="The video to save."),
|
||||
io.String.Input("filename_prefix", default="video/ComfyUI", tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."),
|
||||
io.Combo.Input("format", options=VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."),
|
||||
io.Combo.Input("codec", options=VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."),
|
||||
io.Combo.Input("format", options=Types.VideoContainer.as_input(), default="auto", tooltip="The format to save the video as."),
|
||||
io.Combo.Input("codec", options=Types.VideoCodec.as_input(), default="auto", tooltip="The codec to use for the video."),
|
||||
],
|
||||
outputs=[],
|
||||
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
||||
is_output_node=True,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, video: VideoInput, filename_prefix, format: str, codec) -> io.NodeOutput:
|
||||
def execute(cls, video: Input.Video, filename_prefix, format: str, codec) -> io.NodeOutput:
|
||||
width, height = video.get_dimensions()
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
filename_prefix,
|
||||
@ -105,10 +100,10 @@ class SaveVideo(io.ComfyNode):
|
||||
metadata["prompt"] = cls.hidden.prompt
|
||||
if len(metadata) > 0:
|
||||
saved_metadata = metadata
|
||||
file = f"{filename}_{counter:05}_.{VideoContainer.get_extension(format)}"
|
||||
file = f"{filename}_{counter:05}_.{Types.VideoContainer.get_extension(format)}"
|
||||
video.save_to(
|
||||
os.path.join(full_output_folder, file),
|
||||
format=VideoContainer(format),
|
||||
format=Types.VideoContainer(format),
|
||||
codec=codec,
|
||||
metadata=saved_metadata
|
||||
)
|
||||
@ -135,9 +130,9 @@ class CreateVideo(io.ComfyNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, images: ImageInput, fps: float, audio: Optional[AudioInput] = None) -> io.NodeOutput:
|
||||
def execute(cls, images: Input.Image, fps: float, audio: Optional[Input.Audio] = None) -> io.NodeOutput:
|
||||
return io.NodeOutput(
|
||||
VideoFromComponents(VideoComponents(images=images, audio=audio, frame_rate=Fraction(fps)))
|
||||
InputImpl.VideoFromComponents(Types.VideoComponents(images=images, audio=audio, frame_rate=Fraction(fps)))
|
||||
)
|
||||
|
||||
class GetVideoComponents(io.ComfyNode):
|
||||
@ -159,11 +154,11 @@ class GetVideoComponents(io.ComfyNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, video: VideoInput) -> io.NodeOutput:
|
||||
def execute(cls, video: Input.Video) -> io.NodeOutput:
|
||||
components = video.get_components()
|
||||
|
||||
return io.NodeOutput(components.images, components.audio, float(components.frame_rate))
|
||||
|
||||
|
||||
class LoadVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
@ -185,7 +180,7 @@ class LoadVideo(io.ComfyNode):
|
||||
@classmethod
|
||||
def execute(cls, file) -> io.NodeOutput:
|
||||
video_path = folder_paths.get_annotated_filepath(file)
|
||||
return io.NodeOutput(VideoFromFile(video_path))
|
||||
return io.NodeOutput(InputImpl.VideoFromFile(video_path))
|
||||
|
||||
@classmethod
|
||||
def fingerprint_inputs(s, file):
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
comfyui-frontend-package==1.33.10
|
||||
comfyui-workflow-templates==0.7.25
|
||||
comfyui-workflow-templates==0.7.51
|
||||
comfyui-embedded-docs==0.3.1
|
||||
torch
|
||||
torchsde
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user