import math from dataclasses import dataclass import torch from torch import Tensor, nn from .math import attention, rope import comfy.ops import comfy.ldm.common_dit class EmbedND(nn.Module): def __init__(self, dim: int, theta: int, axes_dim: list): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim def forward(self, ids: Tensor) -> Tensor: n_axes = ids.shape[-1] emb = torch.cat( [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], dim=-3, ) return emb.unsqueeze(1) def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) if torch.is_floating_point(t): embedding = embedding.to(t) return embedding class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int, bias=True, dtype=None, device=None, operations=None): super().__init__() self.in_layer = operations.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device) self.silu = nn.SiLU() self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=bias, dtype=dtype, device=device) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) class YakMLP(nn.Module): def __init__(self, hidden_size: int, intermediate_size: int, dtype=None, device=None, operations=None): super().__init__() self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.gate_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device) self.up_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device) self.down_proj = operations.Linear(self.intermediate_size, self.hidden_size, bias=True, dtype=dtype, device=device) self.act_fn = nn.SiLU() def forward(self, x: Tensor) -> Tensor: down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dtype=None, device=None, operations=None): if yak_mlp: return YakMLP(hidden_size, mlp_hidden_dim, dtype=dtype, device=device, operations=operations) if mlp_silu_act: return nn.Sequential( operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device), SiLUActivation(), operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device), ) else: return nn.Sequential( operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device), nn.GELU(approximate="tanh"), operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device), ) class RMSNorm(torch.nn.Module): def __init__(self, dim: int, dtype=None, device=None, operations=None): super().__init__() self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device)) def forward(self, x: Tensor): return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6) class QKNorm(torch.nn.Module): def __init__(self, dim: int, dtype=None, device=None, operations=None): super().__init__() self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple: q = self.query_norm(q) k = self.key_norm(k) return q.to(v), k.to(v) class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, dtype=None, device=None, operations=None): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) self.proj = operations.Linear(dim, dim, bias=proj_bias, dtype=dtype, device=device) @dataclass class ModulationOut: shift: Tensor scale: Tensor gate: Tensor class Modulation(nn.Module): def __init__(self, dim: int, double: bool, bias=True, dtype=None, device=None, operations=None): super().__init__() self.is_double = double self.multiplier = 6 if double else 3 self.lin = operations.Linear(dim, self.multiplier * dim, bias=bias, dtype=dtype, device=device) def forward(self, vec: Tensor) -> tuple: if vec.ndim == 2: vec = vec[:, None, :] out = self.lin(nn.functional.silu(vec)).chunk(self.multiplier, dim=-1) return ( ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None, ) def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None): if modulation_dims is None: if m_add is not None: return torch.addcmul(m_add, tensor, m_mult) else: return tensor * m_mult else: for d in modulation_dims: tensor[:, d[0]:d[1]] *= m_mult[:, d[2]] if m_add is not None: tensor[:, d[0]:d[1]] += m_add[:, d[2]] return tensor class SiLUActivation(nn.Module): def __init__(self): super().__init__() self.gate_fn = nn.SiLU() def forward(self, x: Tensor) -> Tensor: x1, x2 = x.chunk(2, dim=-1) return self.gate_fn(x1) * x2 class DoubleStreamBlock(nn.Module): def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None): super().__init__() mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size self.modulation = modulation if self.modulation: self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations) self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations) if self.modulation: self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations) self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations) self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations) self.flipped_img_txt = flipped_img_txt def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}): if self.modulation: img_mod1, img_mod2 = self.img_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec) else: (img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec # prepare image for attention img_modulated = self.img_norm1(img) img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img) img_qkv = self.img_attn.qkv(img_modulated) del img_modulated img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) del img_qkv img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = self.txt_norm1(txt) txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt) txt_qkv = self.txt_attn.qkv(txt_modulated) del txt_modulated txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) del txt_qkv txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) if self.flipped_img_txt: q = torch.cat((img_q, txt_q), dim=2) del img_q, txt_q k = torch.cat((img_k, txt_k), dim=2) del img_k, txt_k v = torch.cat((img_v, txt_v), dim=2) del img_v, txt_v # run actual attention attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) del q, k, v img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:] else: q = torch.cat((txt_q, img_q), dim=2) del txt_q, img_q k = torch.cat((txt_k, img_k), dim=2) del txt_k, img_k v = torch.cat((txt_v, img_v), dim=2) del txt_v, img_v # run actual attention attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) del q, k, v txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:] # calculate the img bloks img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img) del img_attn img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img) # calculate the txt bloks txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt) del txt_attn txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt) if txt.dtype == torch.float16: txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504) return img, txt class SingleStreamBlock(nn.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qk_scale: float = None, modulation=True, mlp_silu_act=False, bias=True, yak_mlp=False, dtype=None, device=None, operations=None ): super().__init__() self.hidden_dim = hidden_size self.num_heads = num_heads head_dim = hidden_size // num_heads self.scale = qk_scale or head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) self.mlp_hidden_dim_first = self.mlp_hidden_dim self.yak_mlp = yak_mlp if mlp_silu_act: self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2) self.mlp_act = SiLUActivation() else: self.mlp_act = nn.GELU(approximate="tanh") if self.yak_mlp: self.mlp_hidden_dim_first *= 2 self.mlp_act = nn.SiLU() # qkv and mlp_in self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device) # proj and mlp_out self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, bias=bias, dtype=dtype, device=device) self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations) self.hidden_size = hidden_size self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) if modulation: self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations) else: self.modulation = None def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor: if self.modulation: mod, _ = self.modulation(vec) else: mod = vec qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim_first], dim=-1) q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) del qkv q, k = self.norm(q, k, v) # compute attention attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options) del q, k, v # compute activation in mlp stream, cat again and run second linear layer if self.yak_mlp: mlp = self.mlp_act(mlp[..., self.mlp_hidden_dim_first // 2:]) * mlp[..., :self.mlp_hidden_dim_first // 2] else: mlp = self.mlp_act(mlp) output = self.linear2(torch.cat((attn, mlp), 2)) x += apply_mod(output, mod.gate, None, modulation_dims) if x.dtype == torch.float16: x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504) return x class LastLayer(nn.Module): def __init__(self, hidden_size: int, patch_size: int, out_channels: int, bias=True, dtype=None, device=None, operations=None): super().__init__() self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=bias, dtype=dtype, device=device) self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=bias, dtype=dtype, device=device)) def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor: if vec.ndim == 2: vec = vec[:, None, :] shift, scale = self.adaLN_modulation(vec).chunk(2, dim=-1) x = apply_mod(self.norm_final(x), (1 + scale), shift, modulation_dims) x = self.linear(x) return x