from __future__ import annotations import av import torchaudio import torch import comfy.model_management import folder_paths import os import hashlib import node_helpers import logging from typing_extensions import override from comfy_api.latest import ComfyExtension, IO, UI class EmptyLatentAudio(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="EmptyLatentAudio", display_name="Empty Latent Audio", category="latent/audio", inputs=[ IO.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1), IO.Int.Input( "batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch." ), ], outputs=[IO.Latent.Output()], ) @classmethod def execute(cls, seconds, batch_size) -> IO.NodeOutput: length = round((seconds * 44100 / 2048) / 2) * 2 latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device()) return IO.NodeOutput({"samples":latent, "type": "audio"}) generate = execute # TODO: remove class ConditioningStableAudio(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="ConditioningStableAudio", category="conditioning", inputs=[ IO.Conditioning.Input("positive"), IO.Conditioning.Input("negative"), IO.Float.Input("seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1), IO.Float.Input("seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1), ], outputs=[ IO.Conditioning.Output(display_name="positive"), IO.Conditioning.Output(display_name="negative"), ], ) @classmethod def execute(cls, positive, negative, seconds_start, seconds_total) -> IO.NodeOutput: positive = node_helpers.conditioning_set_values(positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}) negative = node_helpers.conditioning_set_values(negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}) return IO.NodeOutput(positive, negative) append = execute # TODO: remove class VAEEncodeAudio(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="VAEEncodeAudio", display_name="VAE Encode Audio", category="latent/audio", inputs=[ IO.Audio.Input("audio"), IO.Vae.Input("vae"), ], outputs=[IO.Latent.Output()], ) @classmethod def execute(cls, vae, audio) -> IO.NodeOutput: sample_rate = audio["sample_rate"] if 44100 != sample_rate: waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) else: waveform = audio["waveform"] t = vae.encode(waveform.movedim(1, -1)) return IO.NodeOutput({"samples":t}) encode = execute # TODO: remove class VAEDecodeAudio(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="VAEDecodeAudio", display_name="VAE Decode Audio", category="latent/audio", inputs=[ IO.Latent.Input("samples"), IO.Vae.Input("vae"), ], outputs=[IO.Audio.Output()], ) @classmethod def execute(cls, vae, samples) -> IO.NodeOutput: audio = vae.decode(samples["samples"]).movedim(-1, 1) std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0 std[std < 1.0] = 1.0 audio /= std return IO.NodeOutput({"waveform": audio, "sample_rate": 44100}) decode = execute # TODO: remove class SaveAudio(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="SaveAudio", display_name="Save Audio (FLAC)", category="audio", inputs=[ IO.Audio.Input("audio"), IO.String.Input("filename_prefix", default="audio/ComfyUI"), ], hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> IO.NodeOutput: return IO.NodeOutput( ui=UI.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format) ) save_flac = execute # TODO: remove class SaveAudioMP3(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="SaveAudioMP3", display_name="Save Audio (MP3)", category="audio", inputs=[ IO.Audio.Input("audio"), IO.String.Input("filename_prefix", default="audio/ComfyUI"), IO.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"), ], hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, audio, filename_prefix="ComfyUI", format="mp3", quality="128k") -> IO.NodeOutput: return IO.NodeOutput( ui=UI.AudioSaveHelper.get_save_audio_ui( audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality ) ) save_mp3 = execute # TODO: remove class SaveAudioOpus(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="SaveAudioOpus", display_name="Save Audio (Opus)", category="audio", inputs=[ IO.Audio.Input("audio"), IO.String.Input("filename_prefix", default="audio/ComfyUI"), IO.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"), ], hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, audio, filename_prefix="ComfyUI", format="opus", quality="V3") -> IO.NodeOutput: return IO.NodeOutput( ui=UI.AudioSaveHelper.get_save_audio_ui( audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality ) ) save_opus = execute # TODO: remove class PreviewAudio(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="PreviewAudio", display_name="Preview Audio", category="audio", inputs=[ IO.Audio.Input("audio"), ], hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, audio) -> IO.NodeOutput: return IO.NodeOutput(ui=UI.PreviewAudio(audio, cls=cls)) save_flac = execute # TODO: remove def f32_pcm(wav: torch.Tensor) -> torch.Tensor: """Convert audio to float 32 bits PCM format.""" if wav.dtype.is_floating_point: return wav elif wav.dtype == torch.int16: return wav.float() / (2 ** 15) elif wav.dtype == torch.int32: return wav.float() / (2 ** 31) raise ValueError(f"Unsupported wav dtype: {wav.dtype}") def load(filepath: str) -> tuple[torch.Tensor, int]: with av.open(filepath) as af: if not af.streams.audio: raise ValueError("No audio stream found in the file.") stream = af.streams.audio[0] sr = stream.codec_context.sample_rate n_channels = stream.channels frames = [] length = 0 for frame in af.decode(streams=stream.index): buf = torch.from_numpy(frame.to_ndarray()) if buf.shape[0] != n_channels: buf = buf.view(-1, n_channels).t() frames.append(buf) length += buf.shape[1] if not frames: raise ValueError("No audio frames decoded.") wav = torch.cat(frames, dim=1) wav = f32_pcm(wav) return wav, sr class LoadAudio(IO.ComfyNode): @classmethod def define_schema(cls): input_dir = folder_paths.get_input_directory() files = folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]) return IO.Schema( node_id="LoadAudio", display_name="Load Audio", category="audio", inputs=[ IO.Combo.Input("audio", upload=IO.UploadType.audio, options=sorted(files)), ], outputs=[IO.Audio.Output()], ) @classmethod def execute(cls, audio) -> IO.NodeOutput: audio_path = folder_paths.get_annotated_filepath(audio) waveform, sample_rate = load(audio_path) audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} return IO.NodeOutput(audio) @classmethod def fingerprint_inputs(cls, audio): image_path = folder_paths.get_annotated_filepath(audio) m = hashlib.sha256() with open(image_path, 'rb') as f: m.update(f.read()) return m.digest().hex() @classmethod def validate_inputs(cls, audio): if not folder_paths.exists_annotated_filepath(audio): return "Invalid audio file: {}".format(audio) return True load = execute # TODO: remove class RecordAudio(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="RecordAudio", display_name="Record Audio", category="audio", inputs=[ IO.Custom("AUDIO_RECORD").Input("audio"), ], outputs=[IO.Audio.Output()], ) @classmethod def execute(cls, audio) -> IO.NodeOutput: audio_path = folder_paths.get_annotated_filepath(audio) waveform, sample_rate = load(audio_path) audio = {"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate} return IO.NodeOutput(audio) load = execute # TODO: remove class TrimAudioDuration(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="TrimAudioDuration", display_name="Trim Audio Duration", description="Trim audio tensor into chosen time range.", category="audio", inputs=[ IO.Audio.Input("audio"), IO.Float.Input( "start_index", default=0.0, min=-0xffffffffffffffff, max=0xffffffffffffffff, step=0.01, tooltip="Start time in seconds, can be negative to count from the end (supports sub-seconds).", ), IO.Float.Input( "duration", default=60.0, min=0.0, step=0.01, tooltip="Duration in seconds", ), ], outputs=[IO.Audio.Output()], ) @classmethod def execute(cls, audio, start_index, duration) -> IO.NodeOutput: waveform = audio["waveform"] sample_rate = audio["sample_rate"] audio_length = waveform.shape[-1] if start_index < 0: start_frame = audio_length + int(round(start_index * sample_rate)) else: start_frame = int(round(start_index * sample_rate)) start_frame = max(0, min(start_frame, audio_length - 1)) end_frame = start_frame + int(round(duration * sample_rate)) end_frame = max(0, min(end_frame, audio_length)) if start_frame >= end_frame: raise ValueError("AudioTrim: Start time must be less than end time and be within the audio length.") return IO.NodeOutput({"waveform": waveform[..., start_frame:end_frame], "sample_rate": sample_rate}) trim = execute # TODO: remove class SplitAudioChannels(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="SplitAudioChannels", display_name="Split Audio Channels", description="Separates the audio into left and right channels.", category="audio", inputs=[ IO.Audio.Input("audio"), ], outputs=[ IO.Audio.Output(display_name="left"), IO.Audio.Output(display_name="right"), ], ) @classmethod def execute(cls, audio) -> IO.NodeOutput: waveform = audio["waveform"] sample_rate = audio["sample_rate"] if waveform.shape[1] != 2: raise ValueError("AudioSplit: Input audio has only one channel.") left_channel = waveform[..., 0:1, :] right_channel = waveform[..., 1:2, :] return IO.NodeOutput({"waveform": left_channel, "sample_rate": sample_rate}, {"waveform": right_channel, "sample_rate": sample_rate}) separate = execute # TODO: remove def match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2): if sample_rate_1 != sample_rate_2: if sample_rate_1 > sample_rate_2: waveform_2 = torchaudio.functional.resample(waveform_2, sample_rate_2, sample_rate_1) output_sample_rate = sample_rate_1 logging.info(f"Resampling audio2 from {sample_rate_2}Hz to {sample_rate_1}Hz for merging.") else: waveform_1 = torchaudio.functional.resample(waveform_1, sample_rate_1, sample_rate_2) output_sample_rate = sample_rate_2 logging.info(f"Resampling audio1 from {sample_rate_1}Hz to {sample_rate_2}Hz for merging.") else: output_sample_rate = sample_rate_1 return waveform_1, waveform_2, output_sample_rate class AudioConcat(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="AudioConcat", display_name="Audio Concat", description="Concatenates the audio1 to audio2 in the specified direction.", category="audio", inputs=[ IO.Audio.Input("audio1"), IO.Audio.Input("audio2"), IO.Combo.Input( "direction", options=['after', 'before'], default="after", tooltip="Whether to append audio2 after or before audio1.", ) ], outputs=[IO.Audio.Output()], ) @classmethod def execute(cls, audio1, audio2, direction) -> IO.NodeOutput: waveform_1 = audio1["waveform"] waveform_2 = audio2["waveform"] sample_rate_1 = audio1["sample_rate"] sample_rate_2 = audio2["sample_rate"] if waveform_1.shape[1] == 1: waveform_1 = waveform_1.repeat(1, 2, 1) logging.info("AudioConcat: Converted mono audio1 to stereo by duplicating the channel.") if waveform_2.shape[1] == 1: waveform_2 = waveform_2.repeat(1, 2, 1) logging.info("AudioConcat: Converted mono audio2 to stereo by duplicating the channel.") waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2) if direction == 'after': concatenated_audio = torch.cat((waveform_1, waveform_2), dim=2) elif direction == 'before': concatenated_audio = torch.cat((waveform_2, waveform_1), dim=2) return IO.NodeOutput({"waveform": concatenated_audio, "sample_rate": output_sample_rate}) concat = execute # TODO: remove class AudioMerge(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="AudioMerge", display_name="Audio Merge", description="Combine two audio tracks by overlaying their waveforms.", category="audio", inputs=[ IO.Audio.Input("audio1"), IO.Audio.Input("audio2"), IO.Combo.Input( "merge_method", options=["add", "mean", "subtract", "multiply"], tooltip="The method used to combine the audio waveforms.", ) ], outputs=[IO.Audio.Output()], ) @classmethod def execute(cls, audio1, audio2, merge_method) -> IO.NodeOutput: waveform_1 = audio1["waveform"] waveform_2 = audio2["waveform"] sample_rate_1 = audio1["sample_rate"] sample_rate_2 = audio2["sample_rate"] waveform_1, waveform_2, output_sample_rate = match_audio_sample_rates(waveform_1, sample_rate_1, waveform_2, sample_rate_2) length_1 = waveform_1.shape[-1] length_2 = waveform_2.shape[-1] if length_2 > length_1: logging.info(f"AudioMerge: Trimming audio2 from {length_2} to {length_1} samples to match audio1 length.") waveform_2 = waveform_2[..., :length_1] elif length_2 < length_1: logging.info(f"AudioMerge: Padding audio2 from {length_2} to {length_1} samples to match audio1 length.") pad_shape = list(waveform_2.shape) pad_shape[-1] = length_1 - length_2 pad_tensor = torch.zeros(pad_shape, dtype=waveform_2.dtype, device=waveform_2.device) waveform_2 = torch.cat((waveform_2, pad_tensor), dim=-1) if merge_method == "add": waveform = waveform_1 + waveform_2 elif merge_method == "subtract": waveform = waveform_1 - waveform_2 elif merge_method == "multiply": waveform = waveform_1 * waveform_2 elif merge_method == "mean": waveform = (waveform_1 + waveform_2) / 2 max_val = waveform.abs().max() if max_val > 1.0: waveform = waveform / max_val return IO.NodeOutput({"waveform": waveform, "sample_rate": output_sample_rate}) merge = execute # TODO: remove class AudioAdjustVolume(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="AudioAdjustVolume", display_name="Audio Adjust Volume", category="audio", inputs=[ IO.Audio.Input("audio"), IO.Int.Input( "volume", default=1, min=-100, max=100, tooltip="Volume adjustment in decibels (dB). 0 = no change, +6 = double, -6 = half, etc", ) ], outputs=[IO.Audio.Output()], ) @classmethod def execute(cls, audio, volume) -> IO.NodeOutput: if volume == 0: return IO.NodeOutput(audio) waveform = audio["waveform"] sample_rate = audio["sample_rate"] gain = 10 ** (volume / 20) waveform = waveform * gain return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate}) adjust_volume = execute # TODO: remove class EmptyAudio(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="EmptyAudio", display_name="Empty Audio", category="audio", inputs=[ IO.Float.Input( "duration", default=60.0, min=0.0, max=0xffffffffffffffff, step=0.01, tooltip="Duration of the empty audio clip in seconds", ), IO.Float.Input( "sample_rate", default=44100, tooltip="Sample rate of the empty audio clip.", ), IO.Float.Input( "channels", default=2, min=1, max=2, tooltip="Number of audio channels (1 for mono, 2 for stereo).", ), ], outputs=[IO.Audio.Output()], ) @classmethod def execute(cls, duration, sample_rate, channels) -> IO.NodeOutput: num_samples = int(round(duration * sample_rate)) waveform = torch.zeros((1, channels, num_samples), dtype=torch.float32) return IO.NodeOutput({"waveform": waveform, "sample_rate": sample_rate}) create_empty_audio = execute # TODO: remove class AudioExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ EmptyLatentAudio, VAEEncodeAudio, VAEDecodeAudio, SaveAudio, SaveAudioMP3, SaveAudioOpus, LoadAudio, PreviewAudio, ConditioningStableAudio, RecordAudio, TrimAudioDuration, SplitAudioChannels, AudioConcat, AudioMerge, AudioAdjustVolume, EmptyAudio, ] async def comfy_entrypoint() -> AudioExtension: return AudioExtension()