import logging import os import json import numpy as np import torch from PIL import Image from typing_extensions import override import folder_paths import node_helpers from comfy_api.latest import ComfyExtension, io def load_and_process_images(image_files, input_dir): """Utility function to load and process a list of images. Args: image_files: List of image filenames input_dir: Base directory containing the images resize_method: How to handle images of different sizes ("None", "Stretch", "Crop", "Pad") Returns: torch.Tensor: Batch of processed images """ if not image_files: raise ValueError("No valid images found in input") output_images = [] for file in image_files: image_path = os.path.join(input_dir, file) img = node_helpers.pillow(Image.open, image_path) if img.mode == "I": img = img.point(lambda i: i * (1 / 255)) img = img.convert("RGB") img_array = np.array(img).astype(np.float32) / 255.0 img_tensor = torch.from_numpy(img_array)[None,] output_images.append(img_tensor) return output_images class LoadImageDataSetFromFolderNode(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="LoadImageDataSetFromFolder", display_name="Load Image Dataset from Folder", category="dataset", is_experimental=True, inputs=[ io.Combo.Input( "folder", options=folder_paths.get_input_subfolders(), tooltip="The folder to load images from.", ) ], outputs=[ io.Image.Output( display_name="images", is_output_list=True, tooltip="List of loaded images", ) ], ) @classmethod def execute(cls, folder): sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] image_files = [ f for f in os.listdir(sub_input_dir) if any(f.lower().endswith(ext) for ext in valid_extensions) ] output_tensor = load_and_process_images(image_files, sub_input_dir) return io.NodeOutput(output_tensor) class LoadImageTextDataSetFromFolderNode(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="LoadImageTextDataSetFromFolder", display_name="Load Image and Text Dataset from Folder", category="dataset", is_experimental=True, inputs=[ io.Combo.Input( "folder", options=folder_paths.get_input_subfolders(), tooltip="The folder to load images from.", ) ], outputs=[ io.Image.Output( display_name="images", is_output_list=True, tooltip="List of loaded images", ), io.String.Output( display_name="texts", is_output_list=True, tooltip="List of text captions", ), ], ) @classmethod def execute(cls, folder): logging.info(f"Loading images from folder: {folder}") sub_input_dir = os.path.join(folder_paths.get_input_directory(), folder) valid_extensions = [".png", ".jpg", ".jpeg", ".webp"] image_files = [] for item in os.listdir(sub_input_dir): path = os.path.join(sub_input_dir, item) if any(item.lower().endswith(ext) for ext in valid_extensions): image_files.append(path) elif os.path.isdir(path): # Support kohya-ss/sd-scripts folder structure repeat = 1 if item.split("_")[0].isdigit(): repeat = int(item.split("_")[0]) image_files.extend( [ os.path.join(path, f) for f in os.listdir(path) if any(f.lower().endswith(ext) for ext in valid_extensions) ] * repeat ) caption_file_path = [ f.replace(os.path.splitext(f)[1], ".txt") for f in image_files ] captions = [] for caption_file in caption_file_path: caption_path = os.path.join(sub_input_dir, caption_file) if os.path.exists(caption_path): with open(caption_path, "r", encoding="utf-8") as f: caption = f.read().strip() captions.append(caption) else: captions.append("") output_tensor = load_and_process_images(image_files, sub_input_dir) logging.info(f"Loaded {len(output_tensor)} images from {sub_input_dir}.") return io.NodeOutput(output_tensor, captions) def save_images_to_folder(image_list, output_dir, prefix="image"): """Utility function to save a list of image tensors to disk. Args: image_list: List of image tensors (each [1, H, W, C] or [H, W, C] or [C, H, W]) output_dir: Directory to save images to prefix: Filename prefix Returns: List of saved filenames """ os.makedirs(output_dir, exist_ok=True) saved_files = [] for idx, img_tensor in enumerate(image_list): # Handle different tensor shapes if isinstance(img_tensor, torch.Tensor): # Remove batch dimension if present [1, H, W, C] -> [H, W, C] if img_tensor.dim() == 4 and img_tensor.shape[0] == 1: img_tensor = img_tensor.squeeze(0) # If tensor is [C, H, W], permute to [H, W, C] if img_tensor.dim() == 3 and img_tensor.shape[0] in [1, 3, 4]: if ( img_tensor.shape[0] <= 4 and img_tensor.shape[1] > 4 and img_tensor.shape[2] > 4 ): img_tensor = img_tensor.permute(1, 2, 0) # Convert to numpy and scale to 0-255 img_array = img_tensor.cpu().numpy() img_array = np.clip(img_array * 255.0, 0, 255).astype(np.uint8) # Convert to PIL Image img = Image.fromarray(img_array) else: raise ValueError(f"Expected torch.Tensor, got {type(img_tensor)}") # Save image filename = f"{prefix}_{idx:05d}.png" filepath = os.path.join(output_dir, filename) img.save(filepath) saved_files.append(filename) return saved_files class SaveImageDataSetToFolderNode(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="SaveImageDataSetToFolder", display_name="Save Image Dataset to Folder", category="dataset", is_experimental=True, is_output_node=True, is_input_list=True, # Receive images as list inputs=[ io.Image.Input("images", tooltip="List of images to save."), io.String.Input( "folder_name", default="dataset", tooltip="Name of the folder to save images to (inside output directory).", ), io.String.Input( "filename_prefix", default="image", tooltip="Prefix for saved image filenames.", ), ], outputs=[], ) @classmethod def execute(cls, images, folder_name, filename_prefix): # Extract scalar values folder_name = folder_name[0] filename_prefix = filename_prefix[0] output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) saved_files = save_images_to_folder(images, output_dir, filename_prefix) logging.info(f"Saved {len(saved_files)} images to {output_dir}.") return io.NodeOutput() class SaveImageTextDataSetToFolderNode(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="SaveImageTextDataSetToFolder", display_name="Save Image and Text Dataset to Folder", category="dataset", is_experimental=True, is_output_node=True, is_input_list=True, # Receive both images and texts as lists inputs=[ io.Image.Input("images", tooltip="List of images to save."), io.String.Input("texts", tooltip="List of text captions to save."), io.String.Input( "folder_name", default="dataset", tooltip="Name of the folder to save images to (inside output directory).", ), io.String.Input( "filename_prefix", default="image", tooltip="Prefix for saved image filenames.", ), ], outputs=[], ) @classmethod def execute(cls, images, texts, folder_name, filename_prefix): # Extract scalar values folder_name = folder_name[0] filename_prefix = filename_prefix[0] output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) saved_files = save_images_to_folder(images, output_dir, filename_prefix) # Save captions for idx, (filename, caption) in enumerate(zip(saved_files, texts)): caption_filename = filename.replace(".png", ".txt") caption_path = os.path.join(output_dir, caption_filename) with open(caption_path, "w", encoding="utf-8") as f: f.write(caption) logging.info(f"Saved {len(saved_files)} images and captions to {output_dir}.") return io.NodeOutput() # ========== Helper Functions for Transform Nodes ========== def tensor_to_pil(img_tensor): """Convert tensor to PIL Image.""" if img_tensor.dim() == 4 and img_tensor.shape[0] == 1: img_tensor = img_tensor.squeeze(0) img_array = (img_tensor.cpu().numpy() * 255).clip(0, 255).astype(np.uint8) return Image.fromarray(img_array) def pil_to_tensor(img): """Convert PIL Image to tensor.""" img_array = np.array(img).astype(np.float32) / 255.0 return torch.from_numpy(img_array)[None,] # ========== Base Classes for Transform Nodes ========== class ImageProcessingNode(io.ComfyNode): """Base class for image processing nodes that operate on images. Child classes should set: node_id: Unique node identifier (required) display_name: Display name (optional, defaults to node_id) description: Node description (optional) extra_inputs: List of additional io.Input objects beyond "images" (optional) is_group_process: None (auto-detect), True (group), or False (individual) (optional) is_output_list: True (list output) or False (single output) (optional, default True) Child classes must implement ONE of: _process(cls, image, **kwargs) -> tensor (for single-item processing) _group_process(cls, images, **kwargs) -> list[tensor] (for group processing) """ node_id = None display_name = None description = None extra_inputs = [] is_group_process = None # None = auto-detect, True/False = explicit is_output_list = None # None = auto-detect based on processing mode @classmethod def _detect_processing_mode(cls): """Detect whether this node uses group or individual processing. Returns: bool: True if group processing, False if individual processing """ # Explicit setting takes precedence if cls.is_group_process is not None: return cls.is_group_process # Check which method is overridden by looking at the defining class in MRO base_class = ImageProcessingNode # Find which class in MRO defines _process process_definer = None for klass in cls.__mro__: if "_process" in klass.__dict__: process_definer = klass break # Find which class in MRO defines _group_process group_definer = None for klass in cls.__mro__: if "_group_process" in klass.__dict__: group_definer = klass break # Check what was overridden (not defined in base class) has_process = process_definer is not None and process_definer is not base_class has_group = group_definer is not None and group_definer is not base_class if has_process and has_group: raise ValueError( f"{cls.__name__}: Cannot override both _process and _group_process. " "Override only one, or set is_group_process explicitly." ) if not has_process and not has_group: raise ValueError( f"{cls.__name__}: Must override either _process or _group_process" ) return has_group @classmethod def define_schema(cls): if cls.node_id is None: raise NotImplementedError(f"{cls.__name__} must set node_id class variable") is_group = cls._detect_processing_mode() # Auto-detect is_output_list if not explicitly set # Single processing: False (backend collects results into list) # Group processing: True by default (can be False for single-output nodes) output_is_list = ( cls.is_output_list if cls.is_output_list is not None else is_group ) inputs = [ io.Image.Input( "images", tooltip=( "List of images to process." if is_group else "Image to process." ), ) ] inputs.extend(cls.extra_inputs) return io.Schema( node_id=cls.node_id, display_name=cls.display_name or cls.node_id, category="dataset/image", is_experimental=True, is_input_list=is_group, # True for group, False for individual inputs=inputs, outputs=[ io.Image.Output( display_name="images", is_output_list=output_is_list, tooltip="Processed images", ) ], ) @classmethod def execute(cls, images, **kwargs): """Execute the node. Routes to _process or _group_process based on mode.""" is_group = cls._detect_processing_mode() # Extract scalar values from lists for parameters params = {} for k, v in kwargs.items(): if isinstance(v, list) and len(v) == 1: params[k] = v[0] else: params[k] = v if is_group: # Group processing: images is list, call _group_process result = cls._group_process(images, **params) else: # Individual processing: images is single item, call _process result = cls._process(images, **params) return io.NodeOutput(result) @classmethod def _process(cls, image, **kwargs): """Override this method for single-item processing. Args: image: tensor - Single image tensor **kwargs: Additional parameters (already extracted from lists) Returns: tensor - Processed image """ raise NotImplementedError(f"{cls.__name__} must implement _process method") @classmethod def _group_process(cls, images, **kwargs): """Override this method for group processing. Args: images: list[tensor] - List of image tensors **kwargs: Additional parameters (already extracted from lists) Returns: list[tensor] - Processed images """ raise NotImplementedError( f"{cls.__name__} must implement _group_process method" ) class TextProcessingNode(io.ComfyNode): """Base class for text processing nodes that operate on texts. Child classes should set: node_id: Unique node identifier (required) display_name: Display name (optional, defaults to node_id) description: Node description (optional) extra_inputs: List of additional io.Input objects beyond "texts" (optional) is_group_process: None (auto-detect), True (group), or False (individual) (optional) is_output_list: True (list output) or False (single output) (optional, default True) Child classes must implement ONE of: _process(cls, text, **kwargs) -> str (for single-item processing) _group_process(cls, texts, **kwargs) -> list[str] (for group processing) """ node_id = None display_name = None description = None extra_inputs = [] is_group_process = None # None = auto-detect, True/False = explicit is_output_list = None # None = auto-detect based on processing mode @classmethod def _detect_processing_mode(cls): """Detect whether this node uses group or individual processing. Returns: bool: True if group processing, False if individual processing """ # Explicit setting takes precedence if cls.is_group_process is not None: return cls.is_group_process # Check which method is overridden by looking at the defining class in MRO base_class = TextProcessingNode # Find which class in MRO defines _process process_definer = None for klass in cls.__mro__: if "_process" in klass.__dict__: process_definer = klass break # Find which class in MRO defines _group_process group_definer = None for klass in cls.__mro__: if "_group_process" in klass.__dict__: group_definer = klass break # Check what was overridden (not defined in base class) has_process = process_definer is not None and process_definer is not base_class has_group = group_definer is not None and group_definer is not base_class if has_process and has_group: raise ValueError( f"{cls.__name__}: Cannot override both _process and _group_process. " "Override only one, or set is_group_process explicitly." ) if not has_process and not has_group: raise ValueError( f"{cls.__name__}: Must override either _process or _group_process" ) return has_group @classmethod def define_schema(cls): if cls.node_id is None: raise NotImplementedError(f"{cls.__name__} must set node_id class variable") is_group = cls._detect_processing_mode() inputs = [ io.String.Input( "texts", tooltip="List of texts to process." if is_group else "Text to process.", ) ] inputs.extend(cls.extra_inputs) return io.Schema( node_id=cls.node_id, display_name=cls.display_name or cls.node_id, category="dataset/text", is_experimental=True, is_input_list=is_group, # True for group, False for individual inputs=inputs, outputs=[ io.String.Output( display_name="texts", is_output_list=cls.is_output_list, tooltip="Processed texts", ) ], ) @classmethod def execute(cls, texts, **kwargs): """Execute the node. Routes to _process or _group_process based on mode.""" is_group = cls._detect_processing_mode() # Extract scalar values from lists for parameters params = {} for k, v in kwargs.items(): if isinstance(v, list) and len(v) == 1: params[k] = v[0] else: params[k] = v if is_group: # Group processing: texts is list, call _group_process result = cls._group_process(texts, **params) else: # Individual processing: texts is single item, call _process result = cls._process(texts, **params) # Wrap result based on is_output_list if cls.is_output_list: # Result should already be a list (or will be for individual) return io.NodeOutput(result if is_group else [result]) else: # Single output - wrap in list for NodeOutput return io.NodeOutput([result]) @classmethod def _process(cls, text, **kwargs): """Override this method for single-item processing. Args: text: str - Single text string **kwargs: Additional parameters (already extracted from lists) Returns: str - Processed text """ raise NotImplementedError(f"{cls.__name__} must implement _process method") @classmethod def _group_process(cls, texts, **kwargs): """Override this method for group processing. Args: texts: list[str] - List of text strings **kwargs: Additional parameters (already extracted from lists) Returns: list[str] - Processed texts """ raise NotImplementedError( f"{cls.__name__} must implement _group_process method" ) # ========== Image Transform Nodes ========== class ResizeImagesByShorterEdgeNode(ImageProcessingNode): node_id = "ResizeImagesByShorterEdge" display_name = "Resize Images by Shorter Edge" description = "Resize images so that the shorter edge matches the specified length while preserving aspect ratio." extra_inputs = [ io.Int.Input( "shorter_edge", default=512, min=1, max=8192, tooltip="Target length for the shorter edge.", ), ] @classmethod def _process(cls, image, shorter_edge): img = tensor_to_pil(image) w, h = img.size if w < h: new_w = shorter_edge new_h = int(h * (shorter_edge / w)) else: new_h = shorter_edge new_w = int(w * (shorter_edge / h)) img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) return pil_to_tensor(img) class ResizeImagesByLongerEdgeNode(ImageProcessingNode): node_id = "ResizeImagesByLongerEdge" display_name = "Resize Images by Longer Edge" description = "Resize images so that the longer edge matches the specified length while preserving aspect ratio." extra_inputs = [ io.Int.Input( "longer_edge", default=1024, min=1, max=8192, tooltip="Target length for the longer edge.", ), ] @classmethod def _process(cls, image, longer_edge): img = tensor_to_pil(image) w, h = img.size if w > h: new_w = longer_edge new_h = int(h * (longer_edge / w)) else: new_h = longer_edge new_w = int(w * (longer_edge / h)) img = img.resize((new_w, new_h), Image.Resampling.LANCZOS) return pil_to_tensor(img) class CenterCropImagesNode(ImageProcessingNode): node_id = "CenterCropImages" display_name = "Center Crop Images" description = "Center crop all images to the specified dimensions." extra_inputs = [ io.Int.Input("width", default=512, min=1, max=8192, tooltip="Crop width."), io.Int.Input("height", default=512, min=1, max=8192, tooltip="Crop height."), ] @classmethod def _process(cls, image, width, height): img = tensor_to_pil(image) left = max(0, (img.width - width) // 2) top = max(0, (img.height - height) // 2) right = min(img.width, left + width) bottom = min(img.height, top + height) img = img.crop((left, top, right, bottom)) return pil_to_tensor(img) class RandomCropImagesNode(ImageProcessingNode): node_id = "RandomCropImages" display_name = "Random Crop Images" description = ( "Randomly crop all images to the specified dimensions (for data augmentation)." ) extra_inputs = [ io.Int.Input("width", default=512, min=1, max=8192, tooltip="Crop width."), io.Int.Input("height", default=512, min=1, max=8192, tooltip="Crop height."), io.Int.Input( "seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF, tooltip="Random seed." ), ] @classmethod def _process(cls, image, width, height, seed): np.random.seed(seed % (2**32 - 1)) img = tensor_to_pil(image) max_left = max(0, img.width - width) max_top = max(0, img.height - height) left = np.random.randint(0, max_left + 1) if max_left > 0 else 0 top = np.random.randint(0, max_top + 1) if max_top > 0 else 0 right = min(img.width, left + width) bottom = min(img.height, top + height) img = img.crop((left, top, right, bottom)) return pil_to_tensor(img) class NormalizeImagesNode(ImageProcessingNode): node_id = "NormalizeImages" display_name = "Normalize Images" description = "Normalize images using mean and standard deviation." extra_inputs = [ io.Float.Input( "mean", default=0.5, min=0.0, max=1.0, tooltip="Mean value for normalization.", ), io.Float.Input( "std", default=0.5, min=0.001, max=1.0, tooltip="Standard deviation for normalization.", ), ] @classmethod def _process(cls, image, mean, std): return (image - mean) / std class AdjustBrightnessNode(ImageProcessingNode): node_id = "AdjustBrightness" display_name = "Adjust Brightness" description = "Adjust brightness of all images." extra_inputs = [ io.Float.Input( "factor", default=1.0, min=0.0, max=2.0, tooltip="Brightness factor. 1.0 = no change, <1.0 = darker, >1.0 = brighter.", ), ] @classmethod def _process(cls, image, factor): return (image * factor).clamp(0.0, 1.0) class AdjustContrastNode(ImageProcessingNode): node_id = "AdjustContrast" display_name = "Adjust Contrast" description = "Adjust contrast of all images." extra_inputs = [ io.Float.Input( "factor", default=1.0, min=0.0, max=2.0, tooltip="Contrast factor. 1.0 = no change, <1.0 = less contrast, >1.0 = more contrast.", ), ] @classmethod def _process(cls, image, factor): return ((image - 0.5) * factor + 0.5).clamp(0.0, 1.0) class ShuffleDatasetNode(ImageProcessingNode): node_id = "ShuffleDataset" display_name = "Shuffle Image Dataset" description = "Randomly shuffle the order of images in the dataset." is_group_process = True # Requires full list to shuffle extra_inputs = [ io.Int.Input( "seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF, tooltip="Random seed." ), ] @classmethod def _group_process(cls, images, seed): np.random.seed(seed % (2**32 - 1)) indices = np.random.permutation(len(images)) return [images[i] for i in indices] class ShuffleImageTextDatasetNode(io.ComfyNode): """Special node that shuffles both images and texts together.""" @classmethod def define_schema(cls): return io.Schema( node_id="ShuffleImageTextDataset", display_name="Shuffle Image-Text Dataset", category="dataset/image", is_experimental=True, is_input_list=True, inputs=[ io.Image.Input("images", tooltip="List of images to shuffle."), io.String.Input("texts", tooltip="List of texts to shuffle."), io.Int.Input( "seed", default=0, min=0, max=0xFFFFFFFFFFFFFFFF, tooltip="Random seed.", ), ], outputs=[ io.Image.Output( display_name="images", is_output_list=True, tooltip="Shuffled images", ), io.String.Output( display_name="texts", is_output_list=True, tooltip="Shuffled texts" ), ], ) @classmethod def execute(cls, images, texts, seed): seed = seed[0] # Extract scalar np.random.seed(seed % (2**32 - 1)) indices = np.random.permutation(len(images)) shuffled_images = [images[i] for i in indices] shuffled_texts = [texts[i] for i in indices] return io.NodeOutput(shuffled_images, shuffled_texts) # ========== Text Transform Nodes ========== class TextToLowercaseNode(TextProcessingNode): node_id = "TextToLowercase" display_name = "Text to Lowercase" description = "Convert all texts to lowercase." @classmethod def _process(cls, text): return text.lower() class TextToUppercaseNode(TextProcessingNode): node_id = "TextToUppercase" display_name = "Text to Uppercase" description = "Convert all texts to uppercase." @classmethod def _process(cls, text): return text.upper() class TruncateTextNode(TextProcessingNode): node_id = "TruncateText" display_name = "Truncate Text" description = "Truncate all texts to a maximum length." extra_inputs = [ io.Int.Input( "max_length", default=77, min=1, max=10000, tooltip="Maximum text length." ), ] @classmethod def _process(cls, text, max_length): return text[:max_length] class AddTextPrefixNode(TextProcessingNode): node_id = "AddTextPrefix" display_name = "Add Text Prefix" description = "Add a prefix to all texts." extra_inputs = [ io.String.Input("prefix", default="", tooltip="Prefix to add."), ] @classmethod def _process(cls, text, prefix): return prefix + text class AddTextSuffixNode(TextProcessingNode): node_id = "AddTextSuffix" display_name = "Add Text Suffix" description = "Add a suffix to all texts." extra_inputs = [ io.String.Input("suffix", default="", tooltip="Suffix to add."), ] @classmethod def _process(cls, text, suffix): return text + suffix class ReplaceTextNode(TextProcessingNode): node_id = "ReplaceText" display_name = "Replace Text" description = "Replace text in all texts." extra_inputs = [ io.String.Input("find", default="", tooltip="Text to find."), io.String.Input("replace", default="", tooltip="Text to replace with."), ] @classmethod def _process(cls, text, find, replace): return text.replace(find, replace) class StripWhitespaceNode(TextProcessingNode): node_id = "StripWhitespace" display_name = "Strip Whitespace" description = "Strip leading and trailing whitespace from all texts." @classmethod def _process(cls, text): return text.strip() # ========== Group Processing Example Nodes ========== class ImageDeduplicationNode(ImageProcessingNode): """Remove duplicate or very similar images from the dataset using perceptual hashing.""" node_id = "ImageDeduplication" display_name = "Image Deduplication" description = "Remove duplicate or very similar images from the dataset." is_group_process = True # Requires full list to compare images extra_inputs = [ io.Float.Input( "similarity_threshold", default=0.95, min=0.0, max=1.0, tooltip="Similarity threshold (0-1). Higher means more similar. Images above this threshold are considered duplicates.", ), ] @classmethod def _group_process(cls, images, similarity_threshold): """Remove duplicate images using perceptual hashing.""" if len(images) == 0: return [] # Compute simple perceptual hash for each image def compute_hash(img_tensor): """Compute a simple perceptual hash by resizing to 8x8 and comparing to average.""" img = tensor_to_pil(img_tensor) # Resize to 8x8 img_small = img.resize((8, 8), Image.Resampling.LANCZOS).convert("L") # Get pixels pixels = list(img_small.getdata()) # Compute average avg = sum(pixels) / len(pixels) # Create hash (1 if above average, 0 otherwise) hash_bits = "".join("1" if p > avg else "0" for p in pixels) return hash_bits def hamming_distance(hash1, hash2): """Compute Hamming distance between two hash strings.""" return sum(c1 != c2 for c1, c2 in zip(hash1, hash2)) # Compute hashes for all images hashes = [compute_hash(img) for img in images] # Find duplicates keep_indices = [] for i in range(len(images)): is_duplicate = False for j in keep_indices: # Compare hashes distance = hamming_distance(hashes[i], hashes[j]) similarity = 1.0 - (distance / 64.0) # 64 bits total if similarity >= similarity_threshold: is_duplicate = True logging.info( f"Image {i} is similar to image {j} (similarity: {similarity:.3f}), skipping" ) break if not is_duplicate: keep_indices.append(i) # Return only unique images unique_images = [images[i] for i in keep_indices] logging.info( f"Deduplication: kept {len(unique_images)} out of {len(images)} images" ) return unique_images class ImageGridNode(ImageProcessingNode): """Combine multiple images into a single grid/collage.""" node_id = "ImageGrid" display_name = "Image Grid" description = "Arrange multiple images into a grid layout." is_group_process = True # Requires full list to create grid is_output_list = False # Outputs single grid image extra_inputs = [ io.Int.Input( "columns", default=4, min=1, max=20, tooltip="Number of columns in the grid.", ), io.Int.Input( "cell_width", default=256, min=32, max=2048, tooltip="Width of each cell in the grid.", ), io.Int.Input( "cell_height", default=256, min=32, max=2048, tooltip="Height of each cell in the grid.", ), io.Int.Input( "padding", default=4, min=0, max=50, tooltip="Padding between images." ), ] @classmethod def _group_process(cls, images, columns, cell_width, cell_height, padding): """Arrange images into a grid.""" if len(images) == 0: raise ValueError("Cannot create grid from empty image list") # Calculate grid dimensions num_images = len(images) rows = (num_images + columns - 1) // columns # Ceiling division # Calculate total grid size grid_width = columns * cell_width + (columns - 1) * padding grid_height = rows * cell_height + (rows - 1) * padding # Create blank grid grid = Image.new("RGB", (grid_width, grid_height), (0, 0, 0)) # Place images for idx, img_tensor in enumerate(images): row = idx // columns col = idx % columns # Convert to PIL and resize to cell size img = tensor_to_pil(img_tensor) img = img.resize((cell_width, cell_height), Image.Resampling.LANCZOS) # Calculate position x = col * (cell_width + padding) y = row * (cell_height + padding) # Paste into grid grid.paste(img, (x, y)) logging.info( f"Created {columns}x{rows} grid with {num_images} images ({grid_width}x{grid_height})" ) return pil_to_tensor(grid) class MergeImageListsNode(ImageProcessingNode): """Merge multiple image lists into a single list.""" node_id = "MergeImageLists" display_name = "Merge Image Lists" description = "Concatenate multiple image lists into one." is_group_process = True # Receives images as list @classmethod def _group_process(cls, images): """Simply return the images list (already merged by input handling).""" # When multiple list inputs are connected, they're concatenated # For now, this is a simple pass-through logging.info(f"Merged image list contains {len(images)} images") return images class MergeTextListsNode(TextProcessingNode): """Merge multiple text lists into a single list.""" node_id = "MergeTextLists" display_name = "Merge Text Lists" description = "Concatenate multiple text lists into one." is_group_process = True # Receives texts as list @classmethod def _group_process(cls, texts): """Simply return the texts list (already merged by input handling).""" # When multiple list inputs are connected, they're concatenated # For now, this is a simple pass-through logging.info(f"Merged text list contains {len(texts)} texts") return texts # ========== Training Dataset Nodes ========== class MakeTrainingDataset(io.ComfyNode): """Encode images with VAE and texts with CLIP to create a training dataset.""" @classmethod def define_schema(cls): return io.Schema( node_id="MakeTrainingDataset", display_name="Make Training Dataset", category="dataset", is_experimental=True, is_input_list=True, # images and texts as lists inputs=[ io.Image.Input("images", tooltip="List of images to encode."), io.Vae.Input( "vae", tooltip="VAE model for encoding images to latents." ), io.Clip.Input( "clip", tooltip="CLIP model for encoding text to conditioning." ), io.String.Input( "texts", optional=True, tooltip="List of text captions. Can be length n (matching images), 1 (repeated for all), or omitted (uses empty string).", ), ], outputs=[ io.Latent.Output( display_name="latents", is_output_list=True, tooltip="List of latent dicts", ), io.Conditioning.Output( display_name="conditioning", is_output_list=True, tooltip="List of conditioning lists", ), ], ) @classmethod def execute(cls, images, vae, clip, texts=None): # Extract scalars (vae and clip are single values wrapped in lists) vae = vae[0] clip = clip[0] # Handle text list num_images = len(images) if texts is None or len(texts) == 0: # Treat as [""] for unconditional training texts = [""] if len(texts) == 1 and num_images > 1: # Repeat single text for all images texts = texts * num_images elif len(texts) != num_images: raise ValueError( f"Number of texts ({len(texts)}) does not match number of images ({num_images}). " f"Text list should have length {num_images}, 1, or 0." ) # Encode images with VAE logging.info(f"Encoding {num_images} images with VAE...") latents_list = [] # list[{"samples": tensor}] for img_tensor in images: # img_tensor is [1, H, W, 3] latent_tensor = vae.encode(img_tensor[:, :, :, :3]) latents_list.append({"samples": latent_tensor}) # Encode texts with CLIP logging.info(f"Encoding {len(texts)} texts with CLIP...") conditioning_list = [] # list[list[cond]] for text in texts: if text == "": cond = clip.encode_from_tokens_scheduled(clip.tokenize("")) else: tokens = clip.tokenize(text) cond = clip.encode_from_tokens_scheduled(tokens) conditioning_list.append(cond) logging.info( f"Created dataset with {len(latents_list)} latents and {len(conditioning_list)} conditioning." ) return io.NodeOutput(latents_list, conditioning_list) class SaveTrainingDataset(io.ComfyNode): """Save encoded training dataset (latents + conditioning) to disk.""" @classmethod def define_schema(cls): return io.Schema( node_id="SaveTrainingDataset", display_name="Save Training Dataset", category="dataset", is_experimental=True, is_output_node=True, is_input_list=True, # Receive lists inputs=[ io.Latent.Input( "latents", tooltip="List of latent dicts from MakeTrainingDataset.", ), io.Conditioning.Input( "conditioning", tooltip="List of conditioning lists from MakeTrainingDataset.", ), io.String.Input( "folder_name", default="training_dataset", tooltip="Name of folder to save dataset (inside output directory).", ), io.Int.Input( "shard_size", default=1000, min=1, max=100000, tooltip="Number of samples per shard file.", ), ], outputs=[], ) @classmethod def execute(cls, latents, conditioning, folder_name, shard_size): # Extract scalars folder_name = folder_name[0] shard_size = shard_size[0] # latents: list[{"samples": tensor}] # conditioning: list[list[cond]] # Validate lengths match if len(latents) != len(conditioning): raise ValueError( f"Number of latents ({len(latents)}) does not match number of conditions ({len(conditioning)}). " f"Something went wrong in dataset preparation." ) # Create output directory output_dir = os.path.join(folder_paths.get_output_directory(), folder_name) os.makedirs(output_dir, exist_ok=True) # Prepare data pairs num_samples = len(latents) num_shards = (num_samples + shard_size - 1) // shard_size # Ceiling division logging.info( f"Saving {num_samples} samples to {num_shards} shards in {output_dir}..." ) # Save data in shards for shard_idx in range(num_shards): start_idx = shard_idx * shard_size end_idx = min(start_idx + shard_size, num_samples) # Get shard data (list of latent dicts and conditioning lists) shard_data = { "latents": latents[start_idx:end_idx], "conditioning": conditioning[start_idx:end_idx], } # Save shard shard_filename = f"shard_{shard_idx:04d}.pkl" shard_path = os.path.join(output_dir, shard_filename) with open(shard_path, "wb") as f: torch.save(shard_data, f) logging.info( f"Saved shard {shard_idx + 1}/{num_shards}: {shard_filename} ({end_idx - start_idx} samples)" ) # Save metadata metadata = { "num_samples": num_samples, "num_shards": num_shards, "shard_size": shard_size, } metadata_path = os.path.join(output_dir, "metadata.json") with open(metadata_path, "w") as f: json.dump(metadata, f, indent=2) logging.info(f"Successfully saved {num_samples} samples to {output_dir}.") return io.NodeOutput() class LoadTrainingDataset(io.ComfyNode): """Load encoded training dataset from disk.""" @classmethod def define_schema(cls): return io.Schema( node_id="LoadTrainingDataset", display_name="Load Training Dataset", category="dataset", is_experimental=True, inputs=[ io.String.Input( "folder_name", default="training_dataset", tooltip="Name of folder containing the saved dataset (inside output directory).", ), ], outputs=[ io.Latent.Output( display_name="latents", is_output_list=True, tooltip="List of latent dicts", ), io.Conditioning.Output( display_name="conditioning", is_output_list=True, tooltip="List of conditioning lists", ), ], ) @classmethod def execute(cls, folder_name): # Get dataset directory dataset_dir = os.path.join(folder_paths.get_output_directory(), folder_name) if not os.path.exists(dataset_dir): raise ValueError(f"Dataset directory not found: {dataset_dir}") # Find all shard files shard_files = sorted( [ f for f in os.listdir(dataset_dir) if f.startswith("shard_") and f.endswith(".pkl") ] ) if not shard_files: raise ValueError(f"No shard files found in {dataset_dir}") logging.info(f"Loading {len(shard_files)} shards from {dataset_dir}...") # Load all shards all_latents = [] # list[{"samples": tensor}] all_conditioning = [] # list[list[cond]] for shard_file in shard_files: shard_path = os.path.join(dataset_dir, shard_file) with open(shard_path, "rb") as f: shard_data = torch.load(f, weights_only=True) all_latents.extend(shard_data["latents"]) all_conditioning.extend(shard_data["conditioning"]) logging.info(f"Loaded {shard_file}: {len(shard_data['latents'])} samples") logging.info( f"Successfully loaded {len(all_latents)} samples from {dataset_dir}." ) return io.NodeOutput(all_latents, all_conditioning) # ========== Extension Setup ========== class DatasetExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[io.ComfyNode]]: return [ # Data loading/saving nodes LoadImageDataSetFromFolderNode, LoadImageTextDataSetFromFolderNode, SaveImageDataSetToFolderNode, SaveImageTextDataSetToFolderNode, # Image transform nodes ResizeImagesByShorterEdgeNode, ResizeImagesByLongerEdgeNode, CenterCropImagesNode, RandomCropImagesNode, NormalizeImagesNode, AdjustBrightnessNode, AdjustContrastNode, ShuffleDatasetNode, ShuffleImageTextDatasetNode, # Text transform nodes TextToLowercaseNode, TextToUppercaseNode, TruncateTextNode, AddTextPrefixNode, AddTextSuffixNode, ReplaceTextNode, StripWhitespaceNode, # Group processing examples ImageDeduplicationNode, ImageGridNode, MergeImageListsNode, MergeTextListsNode, # Training dataset nodes MakeTrainingDataset, SaveTrainingDataset, LoadTrainingDataset, ] async def comfy_entrypoint() -> DatasetExtension: return DatasetExtension()