from transformers import Qwen2Tokenizer import comfy.text_encoders.llama from comfy import sd1_clip import os import torch import numbers class Qwen3Tokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer") super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen3_2b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=284, pad_token=151643, tokenizer_data=tokenizer_data) class OvisTokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_2b", tokenizer=Qwen3Tokenizer) self.llama_template = "<|im_start|>user\nDescribe the image by detailing the color, quantity, text, shape, size, texture, spatial relationships of the objects and background: {}<|im_end|>\n<|im_start|>assistant\n\n\n\n\n" def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, **kwargs): if llama_template is None: llama_text = self.llama_template.format(text) else: llama_text = llama_template.format(text) tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, disable_weights=True, **kwargs) return tokens class Ovis25_2BModel(sd1_clip.SDClipModel): def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}): super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Ovis25_2B, enable_attention_masks=attention_mask, return_attention_masks=False, zero_out_masked=True, model_options=model_options) class OvisTEModel(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): super().__init__(device=device, dtype=dtype, name="qwen3_2b", clip_model=Ovis25_2BModel, model_options=model_options) def encode_token_weights(self, token_weight_pairs, template_end=-1): out, pooled = super().encode_token_weights(token_weight_pairs) tok_pairs = token_weight_pairs["qwen3_2b"][0] count_im_start = 0 if template_end == -1: for i, v in enumerate(tok_pairs): elem = v[0] if not torch.is_tensor(elem): if isinstance(elem, numbers.Integral): if elem == 4004 and count_im_start < 1: template_end = i count_im_start += 1 if out.shape[1] > (template_end + 1): if tok_pairs[template_end + 1][0] == 25: template_end += 1 out = out[:, template_end:] return out, pooled, {} def te(dtype_llama=None, llama_quantization_metadata=None): class OvisTEModel_(OvisTEModel): def __init__(self, device="cpu", dtype=None, model_options={}): if dtype_llama is not None: dtype = dtype_llama if llama_quantization_metadata is not None: model_options["quantization_metadata"] = llama_quantization_metadata super().__init__(device=device, dtype=dtype, model_options=model_options) return OvisTEModel_