from typing import Literal import torch import torch.nn as nn from .distributions import DiagonalGaussianDistribution from .vae import VAE_16k from .bigvgan import BigVGANVocoder import logging try: import torchaudio except: logging.warning("torchaudio missing, MMAudio VAE model will be broken") def dynamic_range_compression_torch(x, C=1, clip_val=1e-5, *, norm_fn): return norm_fn(torch.clamp(x, min=clip_val) * C) def spectral_normalize_torch(magnitudes, norm_fn): output = dynamic_range_compression_torch(magnitudes, norm_fn=norm_fn) return output class MelConverter(nn.Module): def __init__( self, *, sampling_rate: float, n_fft: int, num_mels: int, hop_size: int, win_size: int, fmin: float, fmax: float, norm_fn, ): super().__init__() self.sampling_rate = sampling_rate self.n_fft = n_fft self.num_mels = num_mels self.hop_size = hop_size self.win_size = win_size self.fmin = fmin self.fmax = fmax self.norm_fn = norm_fn # mel = librosa_mel_fn(sr=self.sampling_rate, # n_fft=self.n_fft, # n_mels=self.num_mels, # fmin=self.fmin, # fmax=self.fmax) # mel_basis = torch.from_numpy(mel).float() mel_basis = torch.empty((num_mels, 1 + n_fft // 2)) hann_window = torch.hann_window(self.win_size) self.register_buffer('mel_basis', mel_basis) self.register_buffer('hann_window', hann_window) @property def device(self): return self.mel_basis.device def forward(self, waveform: torch.Tensor, center: bool = False) -> torch.Tensor: waveform = waveform.clamp(min=-1., max=1.).to(self.device) waveform = torch.nn.functional.pad( waveform.unsqueeze(1), [int((self.n_fft - self.hop_size) / 2), int((self.n_fft - self.hop_size) / 2)], mode='reflect') waveform = waveform.squeeze(1) spec = torch.stft(waveform, self.n_fft, hop_length=self.hop_size, win_length=self.win_size, window=self.hann_window, center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) spec = torch.view_as_real(spec) spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9)) spec = torch.matmul(self.mel_basis, spec) spec = spectral_normalize_torch(spec, self.norm_fn) return spec class AudioAutoencoder(nn.Module): def __init__( self, *, # ckpt_path: str, mode=Literal['16k', '44k'], need_vae_encoder: bool = True, ): super().__init__() assert mode == "16k", "Only 16k mode is supported currently." self.mel_converter = MelConverter(sampling_rate=16_000, n_fft=1024, num_mels=80, hop_size=256, win_size=1024, fmin=0, fmax=8_000, norm_fn=torch.log10) self.vae = VAE_16k().eval() bigvgan_config = { "resblock": "1", "num_mels": 80, "upsample_rates": [4, 4, 2, 2, 2, 2], "upsample_kernel_sizes": [8, 8, 4, 4, 4, 4], "upsample_initial_channel": 1536, "resblock_kernel_sizes": [3, 7, 11], "resblock_dilation_sizes": [ [1, 3, 5], [1, 3, 5], [1, 3, 5], ], "activation": "snakebeta", "snake_logscale": True, } self.vocoder = BigVGANVocoder( bigvgan_config ).eval() @torch.inference_mode() def encode_audio(self, x) -> DiagonalGaussianDistribution: # x: (B * L) mel = self.mel_converter(x) dist = self.vae.encode(mel) return dist @torch.no_grad() def decode(self, z): mel_decoded = self.vae.decode(z) audio = self.vocoder(mel_decoded) audio = torchaudio.functional.resample(audio, 16000, 44100) return audio @torch.no_grad() def encode(self, audio): audio = audio.mean(dim=1) audio = torchaudio.functional.resample(audio, 44100, 16000) dist = self.encode_audio(audio) return dist.mean