import numpy as np import scipy.ndimage import torch import comfy.utils import node_helpers from typing_extensions import override from comfy_api.latest import ComfyExtension, IO, UI import nodes def composite(destination, source, x, y, mask = None, multiplier = 8, resize_source = False): source = source.to(destination.device) if resize_source: source = torch.nn.functional.interpolate(source, size=(destination.shape[-2], destination.shape[-1]), mode="bilinear") source = comfy.utils.repeat_to_batch_size(source, destination.shape[0]) x = max(-source.shape[-1] * multiplier, min(x, destination.shape[-1] * multiplier)) y = max(-source.shape[-2] * multiplier, min(y, destination.shape[-2] * multiplier)) left, top = (x // multiplier, y // multiplier) right, bottom = (left + source.shape[-1], top + source.shape[-2],) if mask is None: mask = torch.ones_like(source) else: mask = mask.to(destination.device, copy=True) mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(source.shape[-2], source.shape[-1]), mode="bilinear") mask = comfy.utils.repeat_to_batch_size(mask, source.shape[0]) # calculate the bounds of the source that will be overlapping the destination # this prevents the source trying to overwrite latent pixels that are out of bounds # of the destination visible_width, visible_height = (destination.shape[-1] - left + min(0, x), destination.shape[-2] - top + min(0, y),) mask = mask[:, :, :visible_height, :visible_width] if mask.ndim < source.ndim: mask = mask.unsqueeze(1) inverse_mask = torch.ones_like(mask) - mask source_portion = mask * source[..., :visible_height, :visible_width] destination_portion = inverse_mask * destination[..., top:bottom, left:right] destination[..., top:bottom, left:right] = source_portion + destination_portion return destination class LatentCompositeMasked(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="LatentCompositeMasked", category="latent", inputs=[ IO.Latent.Input("destination"), IO.Latent.Input("source"), IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8), IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8), IO.Boolean.Input("resize_source", default=False), IO.Mask.Input("mask", optional=True), ], outputs=[IO.Latent.Output()], ) @classmethod def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput: output = destination.copy() destination = destination["samples"].clone() source = source["samples"] output["samples"] = composite(destination, source, x, y, mask, 8, resize_source) return IO.NodeOutput(output) composite = execute # TODO: remove class ImageCompositeMasked(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="ImageCompositeMasked", category="image", inputs=[ IO.Image.Input("destination"), IO.Image.Input("source"), IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Boolean.Input("resize_source", default=False), IO.Mask.Input("mask", optional=True), ], outputs=[IO.Image.Output()], ) @classmethod def execute(cls, destination, source, x, y, resize_source, mask = None) -> IO.NodeOutput: destination, source = node_helpers.image_alpha_fix(destination, source) destination = destination.clone().movedim(-1, 1) output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1) return IO.NodeOutput(output) composite = execute # TODO: remove class MaskToImage(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="MaskToImage", display_name="Convert Mask to Image", category="mask", inputs=[ IO.Mask.Input("mask"), ], outputs=[IO.Image.Output()], ) @classmethod def execute(cls, mask) -> IO.NodeOutput: result = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) return IO.NodeOutput(result) mask_to_image = execute # TODO: remove class ImageToMask(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="ImageToMask", display_name="Convert Image to Mask", category="mask", inputs=[ IO.Image.Input("image"), IO.Combo.Input("channel", options=["red", "green", "blue", "alpha"]), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, image, channel) -> IO.NodeOutput: channels = ["red", "green", "blue", "alpha"] mask = image[:, :, :, channels.index(channel)] return IO.NodeOutput(mask) image_to_mask = execute # TODO: remove class ImageColorToMask(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="ImageColorToMask", category="mask", inputs=[ IO.Image.Input("image"), IO.Int.Input("color", default=0, min=0, max=0xFFFFFF, step=1, display_mode=IO.NumberDisplay.number), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, image, color) -> IO.NodeOutput: temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int) temp = torch.bitwise_left_shift(temp[:,:,:,0], 16) + torch.bitwise_left_shift(temp[:,:,:,1], 8) + temp[:,:,:,2] mask = torch.where(temp == color, 1.0, 0).float() return IO.NodeOutput(mask) image_to_mask = execute # TODO: remove class SolidMask(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="SolidMask", category="mask", inputs=[ IO.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01), IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, value, width, height) -> IO.NodeOutput: out = torch.full((1, height, width), value, dtype=torch.float32, device="cpu") return IO.NodeOutput(out) solid = execute # TODO: remove class InvertMask(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="InvertMask", category="mask", inputs=[ IO.Mask.Input("mask"), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, mask) -> IO.NodeOutput: out = 1.0 - mask return IO.NodeOutput(out) invert = execute # TODO: remove class CropMask(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="CropMask", category="mask", inputs=[ IO.Mask.Input("mask"), IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, mask, x, y, width, height) -> IO.NodeOutput: mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) out = mask[:, y:y + height, x:x + width] return IO.NodeOutput(out) crop = execute # TODO: remove class MaskComposite(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="MaskComposite", category="mask", inputs=[ IO.Mask.Input("destination"), IO.Mask.Input("source"), IO.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, destination, source, x, y, operation) -> IO.NodeOutput: output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone() source = source.reshape((-1, source.shape[-2], source.shape[-1])) left, top = (x, y,) right, bottom = (min(left + source.shape[-1], destination.shape[-1]), min(top + source.shape[-2], destination.shape[-2])) visible_width, visible_height = (right - left, bottom - top,) source_portion = source[:, :visible_height, :visible_width] destination_portion = output[:, top:bottom, left:right] if operation == "multiply": output[:, top:bottom, left:right] = destination_portion * source_portion elif operation == "add": output[:, top:bottom, left:right] = destination_portion + source_portion elif operation == "subtract": output[:, top:bottom, left:right] = destination_portion - source_portion elif operation == "and": output[:, top:bottom, left:right] = torch.bitwise_and(destination_portion.round().bool(), source_portion.round().bool()).float() elif operation == "or": output[:, top:bottom, left:right] = torch.bitwise_or(destination_portion.round().bool(), source_portion.round().bool()).float() elif operation == "xor": output[:, top:bottom, left:right] = torch.bitwise_xor(destination_portion.round().bool(), source_portion.round().bool()).float() output = torch.clamp(output, 0.0, 1.0) return IO.NodeOutput(output) combine = execute # TODO: remove class FeatherMask(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="FeatherMask", category="mask", inputs=[ IO.Mask.Input("mask"), IO.Int.Input("left", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("top", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("right", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), IO.Int.Input("bottom", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, mask, left, top, right, bottom) -> IO.NodeOutput: output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone() left = min(left, output.shape[-1]) right = min(right, output.shape[-1]) top = min(top, output.shape[-2]) bottom = min(bottom, output.shape[-2]) for x in range(left): feather_rate = (x + 1.0) / left output[:, :, x] *= feather_rate for x in range(right): feather_rate = (x + 1) / right output[:, :, -x] *= feather_rate for y in range(top): feather_rate = (y + 1) / top output[:, y, :] *= feather_rate for y in range(bottom): feather_rate = (y + 1) / bottom output[:, -y, :] *= feather_rate return IO.NodeOutput(output) feather = execute # TODO: remove class GrowMask(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="GrowMask", display_name="Grow Mask", category="mask", inputs=[ IO.Mask.Input("mask"), IO.Int.Input("expand", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION, step=1), IO.Boolean.Input("tapered_corners", default=True), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, mask, expand, tapered_corners) -> IO.NodeOutput: c = 0 if tapered_corners else 1 kernel = np.array([[c, 1, c], [1, 1, 1], [c, 1, c]]) mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1])) out = [] for m in mask: output = m.numpy() for _ in range(abs(expand)): if expand < 0: output = scipy.ndimage.grey_erosion(output, footprint=kernel) else: output = scipy.ndimage.grey_dilation(output, footprint=kernel) output = torch.from_numpy(output) out.append(output) return IO.NodeOutput(torch.stack(out, dim=0)) expand_mask = execute # TODO: remove class ThresholdMask(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="ThresholdMask", category="mask", inputs=[ IO.Mask.Input("mask"), IO.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01), ], outputs=[IO.Mask.Output()], ) @classmethod def execute(cls, mask, value) -> IO.NodeOutput: mask = (mask > value).float() return IO.NodeOutput(mask) image_to_mask = execute # TODO: remove # Mask Preview - original implement from # https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81 # upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes class MaskPreview(IO.ComfyNode): @classmethod def define_schema(cls): return IO.Schema( node_id="MaskPreview", display_name="Preview Mask", category="mask", description="Saves the input images to your ComfyUI output directory.", inputs=[ IO.Mask.Input("mask"), ], hidden=[IO.Hidden.prompt, IO.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, mask, filename_prefix="ComfyUI") -> IO.NodeOutput: return IO.NodeOutput(ui=UI.PreviewMask(mask)) class MaskExtension(ComfyExtension): @override async def get_node_list(self) -> list[type[IO.ComfyNode]]: return [ LatentCompositeMasked, ImageCompositeMasked, MaskToImage, ImageToMask, ImageColorToMask, SolidMask, InvertMask, CropMask, MaskComposite, FeatherMask, GrowMask, ThresholdMask, MaskPreview, ] async def comfy_entrypoint() -> MaskExtension: return MaskExtension()