mirror of
https://git.datalinker.icu/comfyanonymous/ComfyUI
synced 2025-12-09 14:04:26 +08:00
320 lines
12 KiB
Python
320 lines
12 KiB
Python
# Credits:
|
|
# Original Flux code can be found on: https://github.com/black-forest-labs/flux
|
|
# Chroma Radiance adaption referenced from https://github.com/lodestone-rock/flow
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import torch
|
|
from torch import Tensor, nn
|
|
from einops import repeat
|
|
import comfy.ldm.common_dit
|
|
|
|
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
|
|
|
|
from comfy.ldm.chroma.model import Chroma, ChromaParams
|
|
from comfy.ldm.chroma.layers import (
|
|
Approximator,
|
|
)
|
|
from .layers import (
|
|
NerfEmbedder,
|
|
NerfGLUBlock,
|
|
NerfFinalLayer,
|
|
NerfFinalLayerConv,
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ChromaRadianceParams(ChromaParams):
|
|
patch_size: int
|
|
nerf_hidden_size: int
|
|
nerf_mlp_ratio: int
|
|
nerf_depth: int
|
|
nerf_max_freqs: int
|
|
# Setting nerf_tile_size to 0 disables tiling.
|
|
nerf_tile_size: int
|
|
# Currently one of linear (legacy) or conv.
|
|
nerf_final_head_type: str
|
|
# None means use the same dtype as the model.
|
|
nerf_embedder_dtype: Optional[torch.dtype]
|
|
|
|
|
|
class ChromaRadiance(Chroma):
|
|
"""
|
|
Transformer model for flow matching on sequences.
|
|
"""
|
|
|
|
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
|
if operations is None:
|
|
raise RuntimeError("Attempt to create ChromaRadiance object without setting operations")
|
|
nn.Module.__init__(self)
|
|
self.dtype = dtype
|
|
params = ChromaRadianceParams(**kwargs)
|
|
self.params = params
|
|
self.patch_size = params.patch_size
|
|
self.in_channels = params.in_channels
|
|
self.out_channels = params.out_channels
|
|
if params.hidden_size % params.num_heads != 0:
|
|
raise ValueError(
|
|
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
|
|
)
|
|
pe_dim = params.hidden_size // params.num_heads
|
|
if sum(params.axes_dim) != pe_dim:
|
|
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
|
|
self.hidden_size = params.hidden_size
|
|
self.num_heads = params.num_heads
|
|
self.in_dim = params.in_dim
|
|
self.out_dim = params.out_dim
|
|
self.hidden_dim = params.hidden_dim
|
|
self.n_layers = params.n_layers
|
|
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
|
self.img_in_patch = operations.Conv2d(
|
|
params.in_channels,
|
|
params.hidden_size,
|
|
kernel_size=params.patch_size,
|
|
stride=params.patch_size,
|
|
bias=True,
|
|
dtype=dtype,
|
|
device=device,
|
|
)
|
|
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
|
# set as nn identity for now, will overwrite it later.
|
|
self.distilled_guidance_layer = Approximator(
|
|
in_dim=self.in_dim,
|
|
hidden_dim=self.hidden_dim,
|
|
out_dim=self.out_dim,
|
|
n_layers=self.n_layers,
|
|
dtype=dtype, device=device, operations=operations
|
|
)
|
|
|
|
self.double_blocks = nn.ModuleList(
|
|
[
|
|
DoubleStreamBlock(
|
|
self.hidden_size,
|
|
self.num_heads,
|
|
mlp_ratio=params.mlp_ratio,
|
|
qkv_bias=params.qkv_bias,
|
|
modulation=False,
|
|
dtype=dtype, device=device, operations=operations
|
|
)
|
|
for _ in range(params.depth)
|
|
]
|
|
)
|
|
|
|
self.single_blocks = nn.ModuleList(
|
|
[
|
|
SingleStreamBlock(
|
|
self.hidden_size,
|
|
self.num_heads,
|
|
mlp_ratio=params.mlp_ratio,
|
|
modulation=False,
|
|
dtype=dtype, device=device, operations=operations,
|
|
)
|
|
for _ in range(params.depth_single_blocks)
|
|
]
|
|
)
|
|
|
|
# pixel channel concat with DCT
|
|
self.nerf_image_embedder = NerfEmbedder(
|
|
in_channels=params.in_channels,
|
|
hidden_size_input=params.nerf_hidden_size,
|
|
max_freqs=params.nerf_max_freqs,
|
|
dtype=params.nerf_embedder_dtype or dtype,
|
|
device=device,
|
|
operations=operations,
|
|
)
|
|
|
|
self.nerf_blocks = nn.ModuleList([
|
|
NerfGLUBlock(
|
|
hidden_size_s=params.hidden_size,
|
|
hidden_size_x=params.nerf_hidden_size,
|
|
mlp_ratio=params.nerf_mlp_ratio,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations,
|
|
) for _ in range(params.nerf_depth)
|
|
])
|
|
|
|
if params.nerf_final_head_type == "linear":
|
|
self.nerf_final_layer = NerfFinalLayer(
|
|
params.nerf_hidden_size,
|
|
out_channels=params.in_channels,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations,
|
|
)
|
|
elif params.nerf_final_head_type == "conv":
|
|
self.nerf_final_layer_conv = NerfFinalLayerConv(
|
|
params.nerf_hidden_size,
|
|
out_channels=params.in_channels,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations,
|
|
)
|
|
else:
|
|
errstr = f"Unsupported nerf_final_head_type {params.nerf_final_head_type}"
|
|
raise ValueError(errstr)
|
|
|
|
self.skip_mmdit = []
|
|
self.skip_dit = []
|
|
self.lite = False
|
|
|
|
@property
|
|
def _nerf_final_layer(self) -> nn.Module:
|
|
if self.params.nerf_final_head_type == "linear":
|
|
return self.nerf_final_layer
|
|
if self.params.nerf_final_head_type == "conv":
|
|
return self.nerf_final_layer_conv
|
|
# Impossible to get here as we raise an error on unexpected types on initialization.
|
|
raise NotImplementedError
|
|
|
|
def img_in(self, img: Tensor) -> Tensor:
|
|
img = self.img_in_patch(img) # -> [B, Hidden, H/P, W/P]
|
|
# flatten into a sequence for the transformer.
|
|
return img.flatten(2).transpose(1, 2) # -> [B, NumPatches, Hidden]
|
|
|
|
def forward_nerf(
|
|
self,
|
|
img_orig: Tensor,
|
|
img_out: Tensor,
|
|
params: ChromaRadianceParams,
|
|
) -> Tensor:
|
|
B, C, H, W = img_orig.shape
|
|
num_patches = img_out.shape[1]
|
|
patch_size = params.patch_size
|
|
|
|
# Store the raw pixel values of each patch for the NeRF head later.
|
|
# unfold creates patches: [B, C * P * P, NumPatches]
|
|
nerf_pixels = nn.functional.unfold(img_orig, kernel_size=patch_size, stride=patch_size)
|
|
nerf_pixels = nerf_pixels.transpose(1, 2) # -> [B, NumPatches, C * P * P]
|
|
|
|
# Reshape for per-patch processing
|
|
nerf_hidden = img_out.reshape(B * num_patches, params.hidden_size)
|
|
nerf_pixels = nerf_pixels.reshape(B * num_patches, C, patch_size**2).transpose(1, 2)
|
|
|
|
if params.nerf_tile_size > 0 and num_patches > params.nerf_tile_size:
|
|
# Enable tiling if nerf_tile_size isn't 0 and we actually have more patches than
|
|
# the tile size.
|
|
img_dct = self.forward_tiled_nerf(nerf_hidden, nerf_pixels, B, C, num_patches, patch_size, params)
|
|
else:
|
|
# Get DCT-encoded pixel embeddings [pixel-dct]
|
|
img_dct = self.nerf_image_embedder(nerf_pixels)
|
|
|
|
# Pass through the dynamic MLP blocks (the NeRF)
|
|
for block in self.nerf_blocks:
|
|
img_dct = block(img_dct, nerf_hidden)
|
|
|
|
# Reassemble the patches into the final image.
|
|
img_dct = img_dct.transpose(1, 2) # -> [B*NumPatches, C, P*P]
|
|
# Reshape to combine with batch dimension for fold
|
|
img_dct = img_dct.reshape(B, num_patches, -1) # -> [B, NumPatches, C*P*P]
|
|
img_dct = img_dct.transpose(1, 2) # -> [B, C*P*P, NumPatches]
|
|
img_dct = nn.functional.fold(
|
|
img_dct,
|
|
output_size=(H, W),
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
)
|
|
return self._nerf_final_layer(img_dct)
|
|
|
|
def forward_tiled_nerf(
|
|
self,
|
|
nerf_hidden: Tensor,
|
|
nerf_pixels: Tensor,
|
|
batch: int,
|
|
channels: int,
|
|
num_patches: int,
|
|
patch_size: int,
|
|
params: ChromaRadianceParams,
|
|
) -> Tensor:
|
|
"""
|
|
Processes the NeRF head in tiles to save memory.
|
|
nerf_hidden has shape [B, L, D]
|
|
nerf_pixels has shape [B, L, C * P * P]
|
|
"""
|
|
tile_size = params.nerf_tile_size
|
|
output_tiles = []
|
|
# Iterate over the patches in tiles. The dimension L (num_patches) is at index 1.
|
|
for i in range(0, num_patches, tile_size):
|
|
end = min(i + tile_size, num_patches)
|
|
|
|
# Slice the current tile from the input tensors
|
|
nerf_hidden_tile = nerf_hidden[i * batch:end * batch]
|
|
nerf_pixels_tile = nerf_pixels[i * batch:end * batch]
|
|
|
|
# get DCT-encoded pixel embeddings [pixel-dct]
|
|
img_dct_tile = self.nerf_image_embedder(nerf_pixels_tile)
|
|
|
|
# pass through the dynamic MLP blocks (the NeRF)
|
|
for block in self.nerf_blocks:
|
|
img_dct_tile = block(img_dct_tile, nerf_hidden_tile)
|
|
|
|
output_tiles.append(img_dct_tile)
|
|
|
|
# Concatenate the processed tiles along the patch dimension
|
|
return torch.cat(output_tiles, dim=0)
|
|
|
|
def radiance_get_override_params(self, overrides: dict) -> ChromaRadianceParams:
|
|
params = self.params
|
|
if not overrides:
|
|
return params
|
|
params_dict = {k: getattr(params, k) for k in params.__dataclass_fields__}
|
|
nullable_keys = frozenset(("nerf_embedder_dtype",))
|
|
bad_keys = tuple(k for k in overrides if k not in params_dict)
|
|
if bad_keys:
|
|
e = f"Unknown key(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
|
|
raise ValueError(e)
|
|
bad_keys = tuple(
|
|
k
|
|
for k, v in overrides.items()
|
|
if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys)
|
|
)
|
|
if bad_keys:
|
|
e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
|
|
raise ValueError(e)
|
|
# At this point it's all valid keys and values so we can merge with the existing params.
|
|
params_dict |= overrides
|
|
return params.__class__(**params_dict)
|
|
|
|
def _forward(
|
|
self,
|
|
x: Tensor,
|
|
timestep: Tensor,
|
|
context: Tensor,
|
|
guidance: Optional[Tensor],
|
|
control: Optional[dict]=None,
|
|
transformer_options: dict={},
|
|
**kwargs: dict,
|
|
) -> Tensor:
|
|
bs, c, h, w = x.shape
|
|
img = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
|
|
|
|
if img.ndim != 4:
|
|
raise ValueError("Input img tensor must be in [B, C, H, W] format.")
|
|
if context.ndim != 3:
|
|
raise ValueError("Input txt tensors must have 3 dimensions.")
|
|
|
|
params = self.radiance_get_override_params(transformer_options.get("chroma_radiance_options", {}))
|
|
|
|
h_len = (img.shape[-2] // self.patch_size)
|
|
w_len = (img.shape[-1] // self.patch_size)
|
|
|
|
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
|
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
|
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
|
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
|
|
|
img_out = self.forward_orig(
|
|
img,
|
|
img_ids,
|
|
context,
|
|
txt_ids,
|
|
timestep,
|
|
guidance,
|
|
control,
|
|
transformer_options,
|
|
attn_mask=kwargs.get("attention_mask", None),
|
|
)
|
|
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]
|